

IT11444

AutoLISP Strategies for CAD Managers
Robert Green
Robert Green Consulting

Learning Objectives

 Learn how to manipulate CUI and tool palette elements via AutoLISP

 Learn how to manipulate profile settings via AutoLISP

 Learn how to manage networked machines via AutoLISP

 Learn how to manage AutoCAD tools without profiles

Description
Learn how to create keystroke-saving functions, delete and redefine commands, load Customize User
Interface (CUI) files, set workspaces, control system variables, call external programs, and more, using
AutoLISP programming language via a proven sample environment. Next, learn how to call the AutoLISP
functions from toolbars, ribbons, and palettes, and learn to control the AutoCAD software
profile/environment variables to manage plot configurations, palettes, and support directories. Finally,
we will discuss how you can use these tricks to control multiple workstations via your network. If you've
ever wanted to know more about how AutoLISP programming language can help you manage your
AutoCAD software tools, you don't want to miss this class. Note: This class assumes you have a working
knowledge of CUI customization and tool palette usage. A basic knowledge of AutoLISP programming
language is also helpful.

Your AU Expert
Since 1991 Robert Green has provided CAD management consulting, programming, training, and
technical writing services for clients throughout the United States, Canada, and Europe. A mechanical
engineer by training, Robert has used many popular CAD tools in a variety of engineering environments
since 1985. Robert has acquired his expertise in CAD management via real-world experience as the
“alpha CAD user” everywhere he has worked. Over time he has come to enjoy the technological and
training challenges associated with CAD management, and he now trains CAD managers via public
speaking. Robert is well known for his insightful articles in Cadalyst magazine and for his book, Expert
CAD Management: The Complete Guide (published by Sybex). When he’s not writing, Robert heads his
own consulting practice, Robert Green Consulting, based in Atlanta, Georgia.

AutoLISP Strategies for CAD Managers

 2

My Philosophy Regarding AutoLISP
AutoLISP is a very powerful language that can take years to learn and master. I’ve been working with it since 1990
and I still learn new things about AutoLISP on every project. Having said this I’d like to say that there is a lot you
can do with AutoLISP without having to be a programming jock if you approach things with a cookbook style
approach and use existing routines.

Of particular importance to me, given my CAD manager emphasis, is the ability to really standardize the way
AutoCAD behaves, load external commands and centralize all of this from a standardized network location.

I realize there is a wide range of AutoLISP skills in this class so I’ve tried to build our examples starting with more
simple concepts and ratchet the complexity of the code up as we move along.

Key Files and Variables

The first thing to understand is that AutoLISP has a couple of key files and a key function that perform startup
operations for you. The key files are called ACAD.LSP and ACADDOC.LSP and the key function is called S::STARTUP
and their operations are as summarized here:

ACADDOC.LSP This file loads every time a new drawing session is started in AutoCAD 2xxx based products.
Therefore any programming you place in this file will be loaded automatically every time a drawing is opened or
started no matter how the ACADLSPASDOC variable is set. Like the ACAD.LSP file, ACADDOC.LSP is normally
located in the SUPPORT subdirectory of the AutoCAD installation.

ACAD.LSP Essentially the same as the ACADDOC.LSP but only loads in as AutoCAD loads (not with every
new drawing) by default. The system variable ACADLSPASDOC controls this file’s loading behavior but, in
practicality, there’s not advantage using this file over the ACADDOC.LSP file.

MENUNAME.MNL This file loads whenever its menu counterpart (either an MNU, MNC or CUI file) is
loaded into AutoCAD. By placing AutoLISP code in this file you can be assured that the code will be loaded into
memory ONLY when the parent menu is in use. Note that the code is only loaded once (like the ACAD.LSP) rather
than with each drawing session (like the ACADDOC.LSP file). Plan accordingly.

Key Functions

The first thing to understand is that AutoLISP has a couple of key files and a key function that perform startup
operations for you. The key files are called ACAD.LSP and ACADDOC.LSP and the key function is called S::STARTUP
and their operations are as summarized here:

S::STARTUP function This function is typically defined in the ACADDOC.LSP file (or ACAD.LSP file for
AutoCAD R14 installations) and its sole job is to execute customized commands
you need to initialize your new drawing environment. This function is the
perfect place to set system variables like DIMSCALE, VIEWRES parameters,
current layers, etc. The most powerful aspect of the S::STARTUP function is
that it invokes automatically and it lets you control exactly how the AutoCAD
environment is initialized.

Reactors These embedded “reactor” like functions were added when Visual Lisp was
bound into AutoCAD 2000. Working with these functions allows HUGE
advances in what AutoLISP can do with only minimal overhead. These
functions must be invoked (typically from the ACAD.LSP file) by loading the VL-
LOAD-COM reactors. We’ll examine reactors in much more detail a bit later.

AutoLISP Strategies for CAD Managers

 3

Basic ACADDOC.LSP

First let’s set some key variables so that each drawing session will get the same basic setup. Just open a text
editing program and enter in the following (note the use of ; characters for insertion of comments):

 (command “viewers” “y” “5000”) ; sets view resolution for no jaggy circles
 (command “-color” “BYLAYER”) ; set color to BYLAYER
 (command “-linetype” “set” “BYLAYER” “”) ; set color to BYLAYER
 (command “menu” “menuname.mnc”) ; load standard menu file at startup
 (prompt “\nACADDOC.LSP loaded … “) ; send a prompt to the command line

Now save this file into your SUPPORT folder with the name ACADDOC.LSP and restart AutoCAD to see if it worked.
If everything loaded fine you’ll see the prompt appear in your command line window. If not the file was most
likely not saved in the correct path.

Q. Why the “.” in front of the commands?

A. It has to do with command redefinition which we’ll look at shortly.

Q. Why the “-” in front of some commands?

A. It allows you to interact with the command via the command line instead of a dialog box.

Note: Only some commands work with the “-” prefix like -layer, -color, -linetype and –plot which are commonly
accessed parameters in many AutoLISP programs.

Conclusion: Obviously you could do much more but even these simple ideas allow you to gain a lot of control
with minimal AutoLISP knowledge. In fact, you can actually control user parameters that would otherwise need
to be implemented in profiles like menu loading!

Defining Functions (Adding)

You’ve probably all dabbled with setting up keystroke shortcuts for AutoCAD commands either by
editing the ACAD.PGP file directly or by using the Tools -> Customize menu in AutoCAD’s interface. This
customization methodology allows you to trigger a command using a single keystroke like this:

F triggers the FILLET command.

But what about more complex keystroke combinations that can’t be replicated with a single command,
like these:

ZOOM ALL

Here’s another favorite of mine, the ZA function that peforms a zoom to extents and then zooms out by a factor of
0.95 to create a slight margin around the outside of engineering title blocks:

(defun c:za ()
 (command “zoom” “e” “zoom” “0.95x“)
 (princ)
)

AutoLISP Strategies for CAD Managers

 4

AUTO PURGE

Here’s a function that does an autopurge and save by keying in ATP:

 (defun c:atp ()
 (command “-purge” “a” “*” “n” “qsave”)
 (princ)
)

Back to FILLET

The problem with the single keystroke F is for FILLET approach is that the FILLET command will always use the last
setting for the FILLETRAD variable. What if I want to trigger a zero radius fillet? Let’s use an AutoLISP function like
this:

(defun c:fz () ; Define an FZ command
 (setvar “filletrad” 0.0) ; Set the fillet radius
 (command “fillet” pause pause) ; Invoke FILLET and wait for two user inputs
 (princ) ; Clear the command line
) ; Close the function

Make it even better like this:

(defun c:fz ()
 (setq old_filletrad (getvar “filletrad”)) ; Store the old fillet radius value in a variable
 (setvar “filletrad” 0.0)
 (command “fillet” pause pause)
 (setvar “filletrad” old_filletrad) ; Put the fillet radius back
 (princ)
)

This example illustrates that simple AutoLISP routines can automate multikeystroke functions with ease!

Note: If you’re unsure how to build a function just go to AutoCAD and type in your commands taking careful
notes of what you typed. Then just use the syntax I’ve given here and substitute your values in. Just watch the
typos and you’ll be writing cool functions very quickly.

Triggering External Commands

What if you wanted to type in NP and have a NotePad session pop up? Do this:

(defun c:np () ; Define an NP command
 (startapp “notepad.exe”) ; Call NotePad
 (princ) ; Clear the command line
) ; Close the function

So long as you know the name of the EXE and the system has the EXE registered file it’ll start.

Note: You can include a path to the EXE file if is not a system registered utility.

AutoLISP Strategies for CAD Managers

 5

Undefining Commands (Removing)

You can undefine a command like this:

 (command “.undefine” “EXPLODE”)

Or:

 (command “.undefine” “LINE”)

Simply put, you can use this technique to remove troublesome commands from AutoCAD’s command set at
system startup. So rather than telling people “don’t explode your dimensions” you can simply turn off the
EXPLODE command!

 You can undefine a command like this:

Conclusion: This is a brute force approach to enforcing command usage but it really does work.

Redefining Commands (Overrides)

Now take it another step and combine undefining with a function definition to make a command work the way we
want it to work like this:

(command “.undefine” “QSAVE”)

 (defun C:QSAVE ()
 (command “-purge” “b” “*” “n” “.qsave”)
 (princ)

)

So what have we accomplished? We’ve redefined the QSAVE command such that it automatically purges any
unused blocks every time the user saves? Tired of telling people to purge the old blocks from their drawings?
Problem solved.

What would this code do:

(command “.undefine” “LINE”)

 (defun C:LINE ()
 (command “.pline”)
 (princ)

)

This example would make the LINE command actually execute PLINE!

AutoLISP Strategies for CAD Managers

 6

Network Support

What if we wanted to store our AutoLISP routines in a single network location so that EVERYBODY had the same
AutoLISP files? This approach would allow us to only maintain a single repository of AutoLISP routines and would
mean that keeping all machines in sync would only require a single maintenance activity on our part; updating
only a single AutoLISP file on the network. I’ve used this network support approach with many clients and it has
not only worked but it has allowed me to keep machines on wide area networks standardized without having to
travel or run my feet to a nub in campus style environments.

Here’s the basic idea of how to gain control:

 Seed the user’s machine with an ACAD.LSP and/or ACADDOC.LSP file in their support directory that will
point to an external network location using a variable.

 Execute all load instructions from the ACAD.LSP and/or ACADDOC.LSP using the variable location.

 Test for the presence of all files you’ll load using the variable location prior to loading to assure that errors
are avoided.

Example ACADDOC.LSP

In this case we wish to load some external AutoLISP files (called UTILS1.LSP and UTILS2.LSP) we’ve written to add
commands to AutoCAD’s vocabulary. The case where commands are being added suggests using ACAD.LSP
because the commands need only be loaded once, when AutoCAD starts up. Further, we’d like to load these files
from a network drive and path that I’ll call X:\AUTOLISP as an example.

The contents of the ADADDOC.LSP would look like this:

(setq lisp_path “X:\\AUTOLISP\\”) ; sets the path

(if (findfile (strcat lisp_path "utils1.lsp"))
 (load (strcat lisp_path "utils1.lsp"))
)

(if (findfile (strcat lisp_path "utils2.lsp"))
 (load (strcat lisp_path "utils2.lsp"))
)

Notice that the LISP_PATH variable is set first because the following statements make use of the variable to locate
the files UTILS1.LSP and UTILS2.LSP in the network drive. This approach gives us the benefits of loading files from a
remote location, as opposed to putting all the code in the ACAD.LSP itself, thus we can maintain the remote files
separately! On the down side though, we still have to maintain the ACAD.LSP file on each machine as we include
more AutoLISP files for loading. We need a way to get around this problem.

In this case we load in a single remote file from the network location that loads all external functions for us. The
new file I’ll reference is called INIT.LSP because I use it to INITIALIZE all my file load statements.

AutoLISP Strategies for CAD Managers

 7

The contents of the ADAD.LSP would look like this:

(setq lisp_path “X:\\AUTOLISP\\”) ; sets the path

(if (findfile (strcat lisp_path "init.lsp"))
 (load (strcat lisp_path "init.lsp"))
)

In the X:\AUTOLISP\ folder we’ll now have a file called INIT.LSP that contains all my SYSVAR settings, function
declarations, profile management, etc.

Now we have complete control because the only thing our ACADDOC.LSP file does it set a network location to
“look to” and a single initializing file. Now I can make any changes I want in the INIT.LSP file and I’ll never have to
go to the local machine again unless I need to change the value of the LISP_PATH variable!

This is the way it should be, zero maintenance at the remote machine, total control from the network support
path.

Bonus: Note that by setting a variable for the network location in memory that we DO NOT have to make any
pathing adjustments in the AutoCAD profile! Again, zero maintenance at the local machine.

AutoLISP Strategies for CAD Managers

 8

Compiling Your Code (VLIDE)

You can also write your code in the VLIDE window (see below) and get the benefit of a drop down function selector
and parenthesis matching. Some programmers really like the VLIDE environment while others (myself included)
prefer to use their own editing program. Either way is fine. It is simply a matter of preference.

One thing I do use the VLIDE interface for is compiling my code into FastLoad (FAS) format which is secure.

Let’s say you have your INIT.LSP created and debugged and now you simply want people to run it but never have
the ability to edit it. Further, let’s say your INIT.LSP file should reside in the X:\AUTOLISP folder. Here’s how you’d
compile the code:

 Start the VLIDE by typing VLIDE at AutoCAD’s command prompt

 In the VLIDE window enter

(vlisp-compile ‘st “x:\\autolisp\\init.lsp”)

 Hit enter

 You’ll now find INIT.FAS in the X:\AUTOLISP folder.

To load this FAS file you’ll need to make the following change to your ACADDOC.LSP:

(if (findfile (strcat lisp_path "init.fas"))
 (load (strcat lisp_path "init.fas"))
)

I really like using the FAS method because I can continue to edit the LSP file while the users only read the compiled
FAS file (which is my latest version).

AutoLISP Strategies for CAD Managers

 9

Supporting Power Users (Overrides)

Supporting power users is always a challenge. On the one hand they have the smarts to help themselves so we
want to let them. On the other hand, we don’t want power users too far outside the standard for fear of
introducting errors. Read on for an approach I use to manage non standard users in a standard way.

USER.LSP Architecture

I’ve found that many companies have power users who have a collection of their own favorite AutoLISP files. The
problem becomes one of balancing the need to standardize the way AutoCAD operates without crippling the
power users that can do their own AutoLISP work. The solution? Implement an automatic routine that allows
users to create their own USER.LSP file that will load in all their AutoLISP code without stepping on the ACAD.LSP
or ACADDOC.LSP files you’ll use to standardize the installation.

A sample code segment for loading the USER.LSP looks like this:

 (if (findfile "user.lsp")
 (load "user.lsp")
)

The only trick here is that the power user must name his/her file USER.LSP and the file must be located in a path
that AutoCAD can find (typically the SUPPORT folder) on the local machine (remember the user is local).

USER.CUIX Architecture

Much like the AutoLISP case we may want to let power users utilize their own, non standard, CUI file. Simple! Use
this code segment:

 (if (findfile "user.cuix")
 (command “menu” "user.cuix")
)

Again, the only requirements are the file name and path as in the USER.LSP case.

You may also take the CUIX architecture further by setting a specific workspace from within the CUI file like this:

 (command “-workspace” ““user”)

This way the workspace “USER” is made current so long as it exists in the current CUIx

AutoLISP Strategies for CAD Managers

 10

Bypassing Profiles

One of the biggest problems with managing AutoCAD is that you have to work with profiles. Profiles are hard to
update and users can always mess with them so no matter how hard you try to manage them you always seem to
fall behind.

The solution? Don’t worry about profiles, use AutoLISP instead.

The techniques you’ll need are registry reads and writes but mainly writes to put the values you want into the
user’s current profile. This can be achieved SAFELY using AutoLISP GETENV and SETENV functions like this:

Step 1: Setup a profile that works (I suggest starting with
<<VANILLA>>) and then find it using the registry editor application
REGEDIT.

Step 2: Next you’ll find the specific key that controls the parameter
you wish to modify. (In our case it’ll be the folder that controls
where printer configurations are found.)

Step 3: Note the EXACT spelling and case of the key:

PrinterConfigDir

Note: If you don’t get this right nothing will work!

Step 4: Override the current profile with an appropriate AutoLISP statement like this:

(setenv "PrinterConfigDir" "Z:\\acad\\Plotters")

or better yet this:

(setenv "PrinterConfigDir" (strcat "Z:\\acad\\Plotters;" (getenv “PrinterConfigDir”)))

Let’s note a few things:

 In the second example I added my network folder to the existing folder as well

 I took care to put MY network folder first

 I must be sure my network folder exists before adding it to the path

 When I combined paths with STRCAT note the “;” I used to separate the paths

 When the SETENV is called the user’s current profile is updated

AutoLISP Strategies for CAD Managers

 11

Expanding on the Idea

With a little investigative work you can discover the following profile variables:

 Support path: ACAD

 DRV path: ACADDRV

 Printer definitions: PrinterConfigDir

 Palettes directory: ToolPalettePath

 Templates location: TemplatePath

 Plot Styles: PrinterStyleSheetDir

 Current CUI: MenuFile

 Enterprise CUI: EnterpriseMenuFile

 Current Workspace: WSCURRENT

 2014 Trusted Paths: TRUSTEDPATHS

It doesn’t take too much thinking to realize that you can now totally control the user operating environment no
matter what profile the user is in! Of course, the burden is on you to make sure you don’t mess anything up – but
think of the power you now have to standardize.

AutoLISP Strategies for CAD Managers

 12

Notes on Reactors

In the sample INIT.LSP file you can download you’ll see a section on reactors with some sample code in it. This
example shows how to detect a user layout switch and set text variables accordingly. It is a great illustration of
how to use reactor style controls to standardize a complex user driven task.

 (vl-load-com) ; This initializes the reactor environment

(defun DoThisAfterLayoutSwitch (Caller CmdSet)
 (prompt (strcat "\nLayout tab switched to: " (getvar "ctab")))

 (if (= (getvar "userr1") 0.0)
 (setvar "userr1" (getvar "dimscale"))
)

 (if (= (getvar "ctab") "Model")
 (progn
 (prompt "\nUser MODEL tab switch")
 (setvar "textsize" (* (getvar "dimtxt") (getvar "userr1")))
 (setvar "dimscale" (getvar "userr1"))
 (setvar "ltscale" (* 0.375 (getvar "userr1")))
)
 (progn
 (prompt "\nUser LAYOUT tab switch")
 (setvar "textsize" (getvar "dimtxt"))
 (setvar "dimscale" 1)
 (setvar "ltscale" 0.375)
)
)
 (princ)
)

(setq MyReactor1
 (vlr-miscellaneous-reactor
 nil
 '((:vlr-layoutSwitched . DoThisAfterLayoutSwitch)
)
)
)

(defun Clear_My_Reactors ()
 (if (and MyReactor1 (vlr-added-p MyReactor1))
 (vlr-remove MyReactor1)
)
)

(defun Clear_All_Reactors (/ TMP)
 (vlr-remove-all :vlr-dwg-reactor)
)

(prompt "\nReactors loaded … ") ; send a diagnostic prompt to the command line

AutoLISP Strategies for CAD Managers

 13

PowerPoints and Materials

You can download updated course handouts (with any additional notes or corrections) for all my presentations at
my web site www.CAD-Manager.com on the AU015 page immediately after AU concludes. You can find a wide
range of information on customization, programming and CAD management elsewhere on my web site.

I will send you a PDF copy of the session PowerPoint presentation if you request it. Just send an email to me at
rgreen@cad-manager.com and be sure to put the course title in the subject line of your message so I’ll know which
class you want.

http://www.cad-manager.com/
mailto:rgreen@CAD-Manager.com?subject=AutoLISP%20Strategies%20for%20CAD%20Managers

