Lightweight Product Design Using Long Fiber-Filled Polypropylene

Warden Schijve SABIC
AU Moldflow Power track, December 2011, Las Vegas
Contents

- Short intro SABIC
- What is long fibre polypropylene?
- What defines the properties?
- What can we do with design?
- What can we do with simulation?
- Why light weight is so important to the automotive industry?
 ➔ Carbon footprint reduction
SABIC

Plastics, Chemicals, Polymers, Metals, Fertilizers

>33,000 Employees
130 million tons by 2020

Plastics from former DSM and GE-Plastics

© 2011 SABIC
- **PE, PP, PC, PBT, ABS, PEI,** etc. and numerous blends.

Automotive materials:

- Lexan Glazing
- Noryl
- PP Compounds
- etc.

- **STAMAX® Long Glass Reinforced Polypropylene**
 + Verton long fibre materials
Typical STAMAX PP-LGF applications

- Instrument panel carrier
- Door module
- Front-end module
Long glass fibre reinforced Polypropylene

PP + additives

Glass fibres

STAMAX®
Pellet detail

- Glass filament
- Thermoplastic coating
- Silane coating
- PP matrix + additives

Contents
- Introduction
- Properties
- Design
- Simulation
- Sustainability
Specific advantages of Long glass PP

Low cost performance material (PP resin)

Good properties at low and high temperatures

Ease of processing (high flowability/thin wall design possible)

Low warpage
LGF-PP

What defines the properties?
What is specific for long glass materials?

1. Fiber orientation
2. Fiber length distribution
3. Fiber dispersion

Anisotropic Shrinkage
- Warpage

Anisotropic Properties
- Mechanical performance
Properties in real parts – heavily dependent on fibre orientation

0°

90°

"parallel"

"perpendicular"

"perp."

"parallel"

1. Fiber orientation
Common design practice – Use of Datasheets

Take E-modulus from datasheet. (Industry standard)

E.g.:
E = 6700 MPa for 30% LGF

"measurements on injection moulded samples"

=> High fibre alignment.
=> Much to high values.

Some use fixed knock-down factors.
Isotropic method EATC

Measure 3 directions, then calculate Isotropic properties

Method description and automatic calculation tools for download on: www.eatc-online.org
Example 40% LGF part

Strength (MPa)

Modulus (MPa)

More orientation

European Alliance for Thermoplastic Composites
Example 40% LGF part

Strength (MPa)

- Real part
- Datasheet
- EATC isotropic result

Modulus (MPa)

- 0 2000 4000 6000 8000 10000

More orientation

European Alliance for Thermoplastic Composites
Fibre length dependent on process

2. Fiber length
Effect fibre length on properties

\[E_I = \eta V_f E_f + (1 - V_f) E_m \]

Fibre effectivity \(\eta \)

- Stiffness
- Strength
- Impact

Source: Schijve, AVK Tagung 2002
Effect fibre length at higher temperatures

Fibre effectivity η **stiffness**

- At higher temperatures, longer fibres are needed for the same effect.
- Similar effect also for strength.

2. Fiber length

Fibre length (mm)

23°C

80°C

23ºC

80ºC

23ºC

80ºC

Fibres

Short fibres

Long fibres

73ºF

180ºF

© 2011 SABIC
Isotropic properties as function of fibre length

- **E-Modulus (MPa)**
- **Tensile strength (MPa)**
- **Penetration Energy (J/mm)**

At $t=3.0$ mm

Indirect measurement of fibre length and properties

Fibre length acc. Owens Corning measurement method. Other methods yield different results.
Competition between dispersion and length

- **Start length:** 12 mm
- **Dispersion:** 100%
- **Fibre length:** < 1 mm
- **Amount of shear during process**

Contents
- Introduction
- Properties
- Design
- Simulation
- Sustainability

3. Fiber dispersion
Dispersion examples - X-Ray pictures

course

- length > 10 mm
- 0.4"

fine

- length ~ 2 mm
- 0.08"
Effect of bundles on mechanical properties

Ashed sample with bundles: Undispersed cut rovings

16x

ca. 1 mm

0.04"
Effect of bundles on mechanical properties

\[\eta = 1 - \frac{L}{D} \sqrt{\frac{2G_m}{E_f \ln(R/r)}} \]

\[\tanh \left(\frac{L}{D} \sqrt{\frac{2G_m}{E_f \ln(R/r)}} \right) \]

=> equal performance as with relative short, well dispersed fibres
Tensile specimens from front-end

Strength (MPa)

- Fine dispersed (STAMAX 40% LGPP)
- Other material with bundles

Average:
- fine $\varepsilon_f = 2.20\%$
- bundles $\varepsilon_f = 1.04\%$

Modulus (MPa)
Conclusion for effectivity graph

Fibre effectivity η

- Stiffness
- Strength

Fibre length (mm)
Conclusion for effectivity graph

Fibre effectivity η

- **Stiffness**
- **Strength**

Fibre length (mm)

- **bundle effect**

Contents

- Introduction
- Properties
- Design
- Simulation
- Sustainability

3. Fiber dispersion
Light weight design

What can we do with design?
Example hybrid front-end with little space

5.15 kg
front-end +
insert
Redesign in same space - full plastic

old design

5.15 kg

Calculations:
- same properties (STAMAX 30YM240)
- minimum same component stiffness
e.g. Lock stiffness 471 N/mm

full plastic redesign
3.29 kg -36%

+ without 4 extra attachment points
Effect clever design – Same loading/boundary conditions

Clever design

Standard design

STAMAX-Full Plastic

Original

Factor 4 difference, just by design
Example radiator support stiffness X-direction

<table>
<thead>
<tr>
<th>XSGABICystle05853_VW_Passat_B6_rigid_hypermesh</th>
<th>DADCDesign</th>
<th>DADCDesign_stiffnesses</th>
<th>Loadcase 1: SS - Radiator Force X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadcase 1: SS - Radiator Force X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.20E+02</td>
<td>-3.67E+02</td>
<td>-5.14E+02</td>
<td></td>
</tr>
<tr>
<td>2.61E+02</td>
<td>-2.01E+02</td>
<td>-1.50E+02</td>
<td></td>
</tr>
<tr>
<td>1.02E+02</td>
<td>-1.04E-03</td>
<td>-3.87E-04</td>
<td></td>
</tr>
</tbody>
</table>

Difference in stiffness factor 2.5

STAMAX-Full Plastic

great potential for pedestrian lower leg support
Light weight design

What can we do with simulation?
Isotropic material data not OK for front-ends.
Isotropic material data not OK for front-ends.

One directional flow ➔ Higher fibre alignment
Resulting orientation and properties

example fibre orientation core layer example E-modulus distribution
Isotropic vs. Anisotropic simulation result

Calculated lock stiffness (N/mm)

- **Isotropic**
- **Anisotropic**

Measured stiffness at 2000 N

→ Anisotropic 20% higher stiffness in this case.
Isotropic versus anisotropic simulation options (used at SABIC)

1. Isotropic

2. Anisotropic
 a) Moldflow → Abaqus
 b) Moldflow → Digimat → Abaqus

1. fibre orientation
2. micro-mechanics
3. mechanical simulation
Prediction of the fiber orientation for LGF-PP

Default Moldflow version
- Folgar-Tucker short glass model
 - Highly aligned orientation as typically found for short fibre.
- Recent: ARD/RSC long glass model
 - Slow orientation development, less aligned.

SABIC expertise
- Special method and data for long glass fibres
- Correct orientation development all flow types.
- Includes: Effect different fibre lengths, concentrations, dispersion.
Predicted versus measured properties – medium fibre length

E-modulus (MPa)

- **Moldflow Folgar-Tucker**
- **Moldflow ARD/RSC**
- **SABIC Moldflow**
- **Measurement**

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Flow Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-0°</td>
<td>31mm 107mm 183mm</td>
</tr>
<tr>
<td>E-0°</td>
<td>31mm 107mm 183mm</td>
</tr>
<tr>
<td>E-90°</td>
<td>31mm 107mm 183mm</td>
</tr>
<tr>
<td>E-90°</td>
<td>31mm 107mm 183mm</td>
</tr>
</tbody>
</table>

E-modulus (MPa)

- **Flow length**: 75mm 100mm 125mm 150mm 175mm 200mm
- **Orientation**: E-0° E-0° E-0° E-0° E-0° E-0° E-0° E-90°

Parallel

Perpendicular

© 2011 SABIC

Contents
- Introduction
- Properties
- Design
- Simulation
- Sustainability
Isotropic versus anisotropic simulation options

1. Isotropic

2. Anisotropic
 a) Moldflow → Abaqus
 b) Moldflow → Digimat → Abaqus

1. fibre orientation
2. micro-mechanics
3. mechanical simulation
What is micromechanics?

Use matrix + fibre mechanical data to predict composite properties:

matrix

volume% length orientation dispersion

fibre

composite
Micromechanics results – example 40% LFT

Contents
- Introduction
- Properties
- Design
- Simulation
- Sustainability

Input:
- Orientation
- Fibre length
- Matrix properties
- Fibre properties
and adaption for long fibre

LFT adapted Moldflow results similar to Digimat but ca. 3% higher, less consistent.

Graph Description:
- Graph showing the variation of Young's modulus (E1, E2), shear modulus (G12), and Poisson's ratio (nu12) with orientation level.
- Orientation level ranges from isotropic to fully aligned.
- E, G (MPa) values are plotted against orientation level.
- a_{22} = 1 - a_{11} is shown for orientation levels.
Isotropic versus anisotropic simulation options

1. Isotropic
2. Anisotropic

a) Moldflow → Abaqus

b) Moldflow → Digimat → Abaqus

1. fibre orientation
2. micro-mechanics
3. mechanical simulation
Calculated lock stiffness
(N/mm)

- isotropic
- Moldflow Abaqus
- Moldflow Digimat Abaqus

Various errors in direct Moldflow Abaqus, most important: use of too stiff linear tri elements
Conclusions effect anisotropic simulations

Anisotropic simulations

20% weight saving + cost saving

But need to know!:

- Fibre orientation
- Fibre length
- Fibre dispersion
- Micro-mechanics

Reliable long fibre simulation

LFT Process knowledge

Long fibre adapted
Why is light weight so important to the automotive industry?

→ Carbon footprint reduction
Number 1 benefit: Lower weight cars \Rightarrow Lower CO$_2$-emissions

Reduction Fuel/CO$_2$:
- Rolling resistance (exhausted)
- Engine alternative fuels / hybrids
- Weight hybrid battery compensation

Roughly: -100 kg \rightarrow -10 g CO$_2$/km*

\Rightarrow Already for European car fleet alone: -100kg/car

= -40 million MT CO$_2$/yr

= Same CO$_2$ reduction as 33000 MW on Windmills!**

*From VW study (PSA: -9g)
** www.ewea.org

Europeon car fleet is \sim 20% of world fleet
So it's good for our planet.

But does the OEM really care?
And all in all, is it the better alternative?
The pain of the OEM: CO₂ emission legislations

Example

Europe, start 2015:

Average car fleet emission < 130 g/km CO₂

Penalties for too high emission*

*Regulation (EC) 443/2009
Problem with weight based criteria

CO₂ Emission (g/km)

Average car weight (kg)

Weight saving to achieve desired CO₂ reduction still gives a penalty

Emission Regulations all over the world

- **European CO₂ Regulations 443/2009: 2015 and up**
- **Rest of the world comparable regulations**

Historical fleet CO₂ emissions performance and current or proposed standards

Source: European Aluminium Association
The pain of the OEM: CO₂ emission legislations

Example: Emission = 140 g/km:

\[= +10 \text{ g/km CO}_2 = 710 \text{ € Penalty per car}* \]

Can be solved with 100 kg weight reduction

\[-100 \text{ kg} \rightarrow -0.4 \text{ liter/100 km} \rightarrow -10 \text{ g/km CO}_2 \]

⇒ Value of weight reduction = 7.1 €/kg to the OEM

*Regulation (EC) 443/2009 penalty in 2015, in 2018 it will be 950€
Penalties for electric vehicles unlikely. But range and battery are problems:

Electric vehicles:
Reduction on battery cost for same driving range:

⇒ Value of weight reduction = 11.5 €/kg to the OEM*

~$7/lb

RWTH Aachen 2010
The value for the consumer

Value of a car that is 100 kg lighter:

-100 kg → -0.4 liter/100 km → -

-760 liter petrol over lifetime car ~ 1040 €*

⇒ Value of weight reduction = 10.4 €/kg by fuel saving for the consumer

⇒ Plus tax benefits for low emission cars. 1.5-5 €/kg**

~$1400

~$6/lb

~$1-3/lb

*Net present value, 190000 km, current European fuel prices
**Country dependent, complex table systems
Summary Value of weight reduction

<table>
<thead>
<tr>
<th></th>
<th>Value (Euros / kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value to the OEM</td>
<td></td>
</tr>
<tr>
<td>CO₂ Penalties</td>
<td>7.1*</td>
</tr>
<tr>
<td>Value to the consumer</td>
<td></td>
</tr>
<tr>
<td>Fuel savings</td>
<td>10.4</td>
</tr>
<tr>
<td>Tax benefits</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>20 €/kg</td>
</tr>
</tbody>
</table>

For gasoline based engine
And likely even better picture for electric vehicles.

* 9.5 €/kg in future
So far about the car use.

All in all, is LGF-PP light weight the better alternative?

⇒ LCA
Life Cycle Assessment

LCA is a mass and energy balance over a product life cycle
LCA measures potential environmental impact of a product life cycle

All the Inputs from Natural World

Product Life Phases

Cradle → Gate → Use → Grave → Cradle

All the Outputs to Natural World

LCA Details

Typical measurements from LCA are
- CO₂eq Emissions (e.g. Greenhouse Gases)
- CO₂ equivalents
- Non-renewable Resource Use (e.g. fossil fuels)
- Mega Joules
- Land Use (e.g. “food vs. fuel vs. nature)

Measurement for: how good is a product/component?:
- Comparison with state of the art solution.
Different light weighting options:

1. LEXAN* Glazing
2. **NORYL*** GTX Fenders
3. STAMAX* PP Tailgate Inner
4. XENOY* Tailgate Outer
5. STAMAX Door Modules
6. LEXAN* EXL Steering Wheel
7. Flex NORYL* Wire Coating
8. STAMAX* Front End Module
9. XENOY* Energy Absorbers
10. ULTEM* Headlamp Reflectors
Noryl* GTX resin

NORYL GTX* Resin – a compatibilized blend of PPE with PA for Body Panels

Poly (2,6-dimethylphenylene) ether (PPE)

On line paintable – conductive
Low CLTE
Freedom of design
Fender life cycle carbon footprint

Noryl* GTX has up to 50% lower footprint vs Steel

Kg CO₂ / 2 fenders

Materials Fabrication Use End-of-Life Total

Steel Aluminum GTX

based on our internal life cycle assessment, peer review in progress
Example Automotive front-end structure

Reference, state of the art:
Steel/PA6 hybrid

3 steel inserts
3.3 kg steel +
2.7 kg PA6/30%SG

STAMAX full plastic
3.5 kg LGF-PP 40%

LCA Study is ongoing.
Includes sensitivities.
Outcome to be published
LCA expected outcome (simplified)

- **CO₂ emission (kg)**
 - Material manufacture
 - Part manufacture
 - Part use
 - Recycle
 - Total

- **High importance use phase**

- **The alternative is "green"!**

"green" actually means here: significant lower CO₂-emission
And what about "green" materials then?

Example: Renewable or bio based material which has lower foot print in production due to CO₂ as absorption from growing plants...
Example of potential false "green washing"

"Green" material, taking CO₂ out of the air, e.g. Natural fibres: low density, but also low properties

Depending on properties may end up higher!

➜ "Green" materials may not be green!

Actually: Renewable/bio based materials may not be sustainable for total LCA.
+ Impact on water / land use also to be made.
General conclusions on LCA

- Material with best properties specific for the application (e.g. high stiffness over weight) will score best in use phase.
- Light weighting very important for automotive applications
- Good design, and making use of good anisotropic simulations will add to this.

Good design + Proper simulation → Weight saving = Sustainable!

-30% to -50%

≈ -20%

Energy/CO₂ LCA

Reference optimal design LGF-PP

Material part use recycle
Thank you for your attention!
THE MATERIALS, PRODUCTS AND SERVICES OF SABIC INNOVATIVE PLASTICS HOLDING BV, ITS SUBSIDIARIES AND AFFILIATES ("SELLER"), ARE SOLD SUBJECT TO SELLER’S STANDARD CONDITIONS OF SALE, WHICH CAN BE FOUND AT http://www.sabic-ip.com. AND ARE AVAILABLE UPON REQUEST. ALTHOUGH ANY INFORMATION OR RECOMMENDATION CONTAINED HEREIN IS GIVEN IN GOOD FAITH, SELLER MAKES NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, (i) THAT THE RESULTS DESCRIBED HEREIN WILL BE OBTAINED UNDER END-USE CONDITIONS, OR (ii) AS TO THE EFFECTIVENESS OR SAFETY OF ANY DESIGN INCORPORATING SELLER’S PRODUCTS, SERVICES OR RECOMMENDATIONS. EXCEPT AS PROVIDED IN SELLER’S STANDARD CONDITIONS OF SALE, SELLER SHALL NOT BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF ITS PRODUCTS OR SERVICES DESCRIBED HEREIN.

Each user is responsible for making its own determination as to the suitability of Seller’s products, services or recommendations for the user’s particular use through appropriate end-use testing and analysis. Nothing in any document or oral statement shall be deemed to alter or waive any provision of Seller’s Standard Conditions of Sale or this Disclaimer, unless it is specifically agreed to in a writing signed by Seller. No statement by Seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right of Seller or as a recommendation for the use of such product, service or design in a manner that infringes any patent or other intellectual property right.

SABIC Innovative Plastics is a trademark of SABIC Europe Holdings BV
* Trademark of SABIC Innovative Plastics IP BV