AUTODESK UNIVERSITY

SD500025 - Bridging the Gap:
Extending AutoLISP with .NET |

Lee Ambrosius — Autodesk, Inc.
Principal Learning Experience Designer | @leeambrosius

222222222222222222

Who's this Session For

= Those that want to learn how to:
= Program with Managed .NET
= Extend the functionality of AutoLISP programs with .NET
= Create custom commands and AutoLISP functions
= Create and develop modern dialog boxes

= What you should already know:
= AutoCAD 2022 (or AutoCAD 2016 and later)
= AutoLISP

About the Speaker

= My name is Lee Ambrosius
= Principal Learning Experience Designer at Autodesk, Inc.
= Technical writer and data analyst
= Have You Tried and My Insights for AutoCAD

= Customization, Developer, and CAD Administration
documentation

= 25 years of customization and programming experience

= Author of the AutoCAD Customization Platform book
series published by Wiley & Sons

= Tn a nutshell:

= T document the past and present AutoCAD releases
for the future

Things You Should Know /
Before Proceeding

e

—
e
—
—

What You Need to Get Started

= For this session, you will need/want:
= AutoCAD 2022 (or AutoCAD 2016 and later)
= Experience with AutoLISP programming
= Materials for this session from the AU website
= Handout
= Additional Materials

Setting Up for this Session

= Materials for this session can be obtained by:
Going to the Autodesk University website and searching on this session’s ID of

1.

SD500025.

In the search results, click the entry for this session.
On the session page, click Downloads and then download

a. Handout
b. Material

Overview

Handout

g
Presentation

[«

4 files

Downloads
|Prﬁ Handout \Prﬁ Presentation \Pl’ﬁ Material \zﬁ Dataset

Downloads

> 4

Introduction

What You Will Learn Today

= At the end of this session, you will have learned to:
= Build and load a .NET assembly
= Create a command or AutoLISP function
= Request input from users
= Create and display a user form

What You Need Before Getting Started

Development Environment:
= Visual Studio 2019
= Visual Studio 2019 Community Edition

ObjectARX Software Development Kit (SDK)

AutoCAD 2022 .NET Wizard

AutoCAD Managed .NET Developer’s Guide

Application Compatibility

= Before starting, you should be aware of the following:
= Determine which AutoCAD releases and OSs you need to support
= Affects the libraries needed
= Affects the .NET Framework needed
= May need to build for different releases

= NET is not compatible with AutoCAD for Mac
= However, ObjectARX can be used with Objective C

/

Create a VB .NET Project

\\

Create a VB .NET Project

0 File Edit View Project Build Debu = Need toinstall:
: B-S W2 -C -0 = Visual Studio 2019 (or Community Edition)
myCommandsvb & X = ObjectARX Software Development Kit (SDK)

[B] MyLISPFunctions .
N S K R = AutoCAD 2022 .NET Wizard
3 '
3 S| Imports System : .
+ | Imports Artodesk AutoCAD. Runt = Create a new project based these templates:
5 mports Autodesk.Auto Appl .
6 imgnrzs iuzodesk.:uzogig.ﬁzf_a - VB Cl-aSS L]bra ry (N ET Fra mework)
7 Imports Autodesk.AutoCAD.G .
8 Im;cur"ts Autodesk. AutoCAD.Edit = AUtOCAD 2022 VB plug_]n
g
18 " This line is not mandatory
11 <Assembly: CommandClass({GetTy
12 —-|Namespace MyLISPFunctions
13

- ' This class is instant

15 " a command is called

vo=F T, Ar L ImER
of a given document

Create a VB .NET Project

= AutoCAD 2022 VB plug-in simplifies the process

o5 AutoCAD NET Wizard Configurator

Specify the location of the folder inside the ObjectARX SDK that ins AcMgd dil

- O X

|C2\Autodesk \ObjectARX_for_AutoCAD_2022_Win_64bit_dim\inc |

Specify the AutoCAD ble location

|C:\ngram Files"Autodesk \AutoCAD 2022

Assemblies to reference

AutoCAD

AutoCAD Database
AutoCAD AutoCAD Core
[AdWindows
[AcWindows
[#cTe

Select All

Ok Cancel

Run As: |ACAD ~

[AcDx

[AutaCAD Interop Comman
[AutaCAD Interop

[B-Rep

[AcCui

Clear All

About...

Create a new project

Recent project templates

WY Class Library (NET Framework) Visual Basic
W Class Library (.NET Standard) Visual Basic
Console App Crs
B Console App (.MET Core) c*

AutoCAD X - Language ~ Platfiorm ~ Project type ~

A AutoCAD 2022 CSharp plug-in
This is a basic AutoCAD Plugin in C#

A AutoCAD 2022 VB plug-in
This is a basic AutoCAD Plugin in VB.net

Not finding what you're locking for?
Install more tools and features

Back MNext

Create a VB .NET Project

Solution Explorer * 0
e o> Gd
Search Solution Explorer (Ctrl+;) po

fad Solution 'MyLISPFunctions' (1 project)
4 MyLISPFunctions
A My Project
4 =B References
& Analyzers
-0 AcCoreMgd
-0 AcDbMgd
=B Achgd
u-B PresentationCore
=-B PresentationFramework
=B Systern
5B System.Data
-0 Systern.Xml
=B WindowsBase
P VB myCommands.vb
B vB myPlugin.vb

Solution Explorer EEGE=E (0,

= Main assemblies you will need to work with:
= AcCoreMgd.dll
= AcDbMgd.dll
= AcMgd.dll

= Access to the AutoCAD ActiveX/COM libraries:
= Autodesk.AutoCAD.Interop.dll
= Autodesk.AutoCAD.Interop.Common.dll

Create a VB .NET Project

Imports Autodesk.AutoCAD.| = Assemblies are divided into namespaces to organize
[} ApplicationServices methods and properties
{} Colors
{} ComponentModel = Common namespaces are:
{ } DatabaseServices = Runtime
{} Editorinput

{} Geometry = ApplicationServices
{} Graphicsinterface = DatabaseServices
{} GraphicsSystem - Geometry

= EditorInput

{} Internal -

{} %

Define a Command

Define a Command

= Create a Public Sub(routine)

= Use the CommandMethod attribute and provide the necessary parameters

= Group name
= Global command name
= Local command name

= Command flags
<CommandMethod("MyGroup", "HelloAU", "BonjourAU", CommandFlags.Modal)>

Public Sub HelloAU()

Dim docEditor As Editor =
Application.DocumentManager.
MdiActiveDocument.Editor

docEditor.WriteMessage("Welcome to AU 2021!")

End Sub

Build and Load a .NET
Assembly

Build and Load a .NET Assembly

Project must be built into a DLL for:
= Debug
= Release

Choose a Solution Configuration and click Build menu > Build Solution

Load a DLL into AutoCAD with the NETLOAD command

DLL can be loaded with AutoLISP:
= (command ". NETLOAD"
"C:/MyTools/MyLISPFunctions.d1ll")

Create and Expose a
Function

Create and Expose a Function

AutoLISP functions are defined similar to custom commands

Create a Public Function that accepts a single ResultBuffer data type

Use the LispFunction attribute

Function should always return a value of one of these two types
= ResultBuffer

= TypedValue

<LispFunction("StringReturn")> _
Public Function (ByVal rb As ResultBuffer)

Return New TypedValue(LispDataType.Text, "My Value")
End Function

Create and Expose a Function

= Check to see if the value passed to the function is a/n
= Standard data type
= TypedValue or array of TypedValue

If Not rb = Nothing Then
For Each val As TypedValue In rb
docEditor.WriteMessage(vbLf & "Type: " & val.TypeCode.ToString())
If IsNothing(val.Value) = False Then
docEditor.WriteMessage(vbLf & "Value: " &val.Value.ToString() & vbLf)
Else
docEditor.WriteMessage(vbLf & "Value: nil" & vbLf)
End If
Next
End If

Create and Expose a Function

ResultBuffer in .NET is similar to a List in AutoLISP

Contains any of the common AutoLISP data types

Represent Lists and Dotted Pairs

Each item of a ResultBuffer is a TypedValue data type
= TypeCode property indicates data type
= TypeValue property contains the set value

Dim rbRt As New ResultBuffer

rbRt.Add(New TypedValue(LispDataType.Intl6, 0))
rbRt.Add(New TypedValue(LispDataType.DottedPair))
rbRt.Add(New TypedValue(LispDataType.Text, "INSERT"))
Return rbRt

Access AutoLISP User-
defined Variables

Access AutoLISP User-defined Variables

= AutoLISP variables defined with SETQ can be accessed with:
= GetLispSymbol
= SetLispSymbol

= GetLispSymbol returns the value assigned to a variable
= Use GetType function to determine data type assigned

= SetLispSymbol assigns an Object data type to a variable

Dim lspVal As Object = doc.GetlLispSymbol("foo")
Dim typeValue As New TypedValue(LispDataType.Nil)

If IsNothing(lspVal) = False Then
typeValue = New TypedValue(LispDataType.Text,
lspval.GetType().Name)
End If

Request User Input

Request User Input

= Userinput is handled with Get* methods similar to those in AutoLISP

= Each Get* method requires the use of a:
= PromptOptions* object controls the method’s behavior
= PromptResult* object contains the return value or status

= Get* methods are members of the Editor object

Dim docEditor As Editor =
Application.DocumentManager.MdiActiveDocument.Editor

Dim pPointOpts As New PromptPointOptions(vbLf +
"Specify a point or [Layer/Undo]: ",
"Layer Undo")

Dim pPointResult As PromptPointResult =
docEditor.GetPoint (pPointOpts)

Request User Input

= Biggest advantage of utilizing the Get* methods from the .NET API is

Pressing ESC doesn’t terminate your program.

= PromptResult allows you to check the status of the Get* function

If pPointResult.Status = PromptStatus.OK Then
typeValue = New TypedValue(LispDataType.Point3d, pPointResult.Value)

' User entered a keyword
ElseIf pPointResult.Status = PromptStatus.Keyword Then
typeValue = New TypedValue(LispDataType.Text,
pPointResult.StringResult)

' User cancelled the input
ElseIf pPointResult.Status = PromptStatus.Cancel Then
MsgBox("Input cancelled")
End If

Create and Display a
Dialog Box

Create and Display a Dialog Box

= NET forms and dialog boxes:

Search Toolbox P -

> AllWindows Forms - = Simpler than DCL

4 Common Controls

&k Pointer . .
Button = Modernized controls and experiences
ChECkBOX_ Insert Mote IEI
8= CheckedListBox
& ComboBox Insertion Point: l:l Pick
Y DateTimePicker Note Type: v
A Label
A LinkLabel i Cancd |,
=Z ListBox : d i
ListView 5]
MaskedTextBox Add New Item - MyLISPFunctions ?X
Y MonthCalendar 4 Installed Sotby: [Defauk <] & Search (Ctrl+E) P~
b MNotifylcon 4 Common ltems Windows Farm Common ftems TYPE: Comman Items
[B MNumericUpDown E:td: A dialog for Windows Forms (WinForms)
& PictureBox - ."—_l User Contral Common ltems ~ 2PPlications
=1 ProgressBar \S,\g_FSeNEr [AboutBox Common ltems
G{ RadioBution b Wb i: Custom Control Common ltems
2= RichTextBox Windows Forms ™
i » Online Dialog Common ltems
Y TeolTip Explorer Form Common ftems
i TreeView
=] WebBrowser Mame: Inshlote
[: Containers — Add Cancel

Final Thoughts

= Extending the functionality of AutoLISP:
= Take advantage of the AutoCAD Managed .NET API
= Utilize modernized dialog boxes and palettes

= Programming has many similarities to Wonderland in Lewis Caroll’s Alice’s Adventures
= Both
= Are virtually endless
= Hold many mysteries just waiting to be discovered

Final Thoughts

= If you have any further questions,

= Leave a comment on this session’s AU page
= Feel free to contact me via

= email: lee.ambrosius@autodesk.com
= twitter: @leeambrosius

= Thanks for watching this session!

//7\\ i
= k;\"l i(//
N/ | =
- a —
- —\\ \ g S o
) 4)) 1\
W, y—4 7 (i \\
(’}/ I\(7 <f}— A,K, - ®
N ®
,;)
15;’
O

AUTODESK
UNIVERSITY

utodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarksbelong
Aytodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this docume

20R1 Autodesk. All rights reserved.

their respective holders.

