
 

 

Page 1 

SD500025 

Bridging the Gap: Extending AutoLISP with .NET 
Lee Ambrosius 
Autodesk, Inc. 
 
 
 
 

 

Description 

AutoLISP is a very powerful programming language, but it doesn't offer the same knockout 
punch that VB.NET/C# does when combined with the AutoCAD .NET API. This class will 
explore the fundamentals of VB.NET and examine how you can use it to enhance existing 
AutoLISP routines. During this class, you will learn how to create basic commands for AutoCAD 
software, and discover functions that you can use with your existing AutoLISP routines. We will 
show examples of how to work with AutoCAD objects, get input from the user, create a basic 
form, and pass values between AutoLISP and .NET, plus other general programming concepts. 
For this class, you should know some AutoLISP, but it will be a beginner-level class for VB.NET 
and the AutoCAD .NET API. 
 

Speaker(s) 

Lee Ambrosius is a Principal Learning Experience Designer at Autodesk, Inc., for the 
AutoCAD® and AutoCAD LT products on Windows and Mac. He works primarily on the 
customization, developer, and CAD administration documentation along with the user 
documentation. Lee has presented at Autodesk University for about 15 years on a range of 
topics, from general AutoCAD customization to programming with the ObjectARX technology. 
He has authored several AutoCAD-related books, with his most recent project being AutoCAD 
Platform Customization: User Interface, AutoLISP, VBA, and Beyond. When Lee isn't writing, 
you can find him roaming various AutoCAD community forums, posting articles on his or the 
AutoCAD blog, or tweeting information regarding the AutoCAD product. 
 

Twitter: @leeambrosius 
Email: lee.ambrosius@autodesk.com 
Blog: http://hyperpics.blogs.com 

 
 

Learning Objectives 

¶ Learn how to build and load a .NET project 

¶ Learn how to create a command or AutoLISP function 

¶ Learn about requesting user input 

¶ Learn how to create and display a user form 
 



 

 

Page 2 

1 Introduction 

AutoCAD is an ever changing platform, not only by what it allows a user to do out of the box but 
what it offers under the hood for those that want to extend it. AutoLISP is the oldest 
programming option for extending AutoCAD, and really has not changed at its core too much 
since it was first implemented. There have been a few significant extensions of AutoLISP since 
it was first introduced, and those were: 

¶ DCL which added the ability to create and display dialog boxes. 

¶ Visual LISP which added an internal editor (or IDE - Integrated Development 
Environment) with AutoCAD 2000. It was offered as a separate download for AutoCAD 
R14. 

Beyond those two enhancements, it has stayed pretty constant which in the development world 
is usually not a good sign. While AutoLISP does not seem to be going anywhere in a hurry, it is 
really not growing much in functionality either. There have been a few native functions added 
over the past few releases for key features, but not quite to the same level that Visual LISP 
extended the functionality of AutoLISP. 

This session explains how to leverage VB.NET to extend the functionality of AutoLISP by 
creating custom native functions in secure libraries. While using VLA- and VLAX functions are 
great, they are also limited in functionality based on if features are exposed in the ActiveX/COM 
libraries and not all new features are supported through the ActiveX/COM APIs. .NET allows 
you to access features in the AutoCAD Managed .NET libraries, ActiveX/COM and also 
functions from ObjectARX if needed. 

2 What You Need Before Getting Started 

Before you start working with VB.NET and the AutoCAD Managed .NET API, you should obtain 
the following: 

¶ ObjectARX Software Development Kit (SDK) – The ObjectARX SDK contains code 
samples, project templates, Managed .NET library files, and the AutoCAD Managed 
.NET Reference Guide. - https://www.autodesk.com/objectarx, under the Licensing 
section, click Download and follow the onscreen instructions. 

¶ AutoCAD 2022 .NET Wizard – The AutoCAD 2022 .NET Wizard helps to define the 
necessary project settings and libraries references that you will need to work with. - 
https://www.autodesk.com/developautocad, click AutoCAD 2022 .Net Wizards.zip and 
save the file to your local drive. Extract the files and run AutoCAD 2022 dotNET 
Wizards.msi. 

¶ Development Environment – Visual Studio 2019 is what you will need if you plan on 
developing applications for AutoCAD 2021 or AutoCAD 2022. If you are working with an 
earlier release of AutoCAD, you will want to obtain an earlier release of Visual Studio. 
See the Which Edition of Microsoft Visual Studio to Use 
(https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-
9A8C-8230AAC48CB4) topic in the AutoCAD Developer documentation to know which 
version of Visual Studio and the .NET Framework you might need to use. 

If you do not have Visual Studio available, you can download Visual Studio 2019 
Community from https://visualstudio.microsoft.com/vs/community/. 

https://www.autodesk.com/objectarx
https://www.autodesk.com/developautocad
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://visualstudio.microsoft.com/vs/community/


 

 

Page 3 

¶ AutoCAD Managed .NET Developerôs Guide – The .NET Developer’s Guide contains 
information on how to work with the AutoCAD Managed .NET API, and there many code 
samples that show the different aspects of the .NET API. 

To access the online help, go to: https://www.autodesk.com/autocad-net-developers-
guide 

Important Terms 

The following are important terms in VB.NET that will be mentioned during this session that you 
might not be aware of: 

Assemblies – A compiled application that can be loaded into AutoCAD or as part of a 
project to access parts of the AutoCAD .NET or another API. The AutoCAD .NET API is 
made up of three primary assemblies, which are: 

¶ AcDbMgd.dll. Use when working with objects in a drawing file. 

¶ AcMgd.dll. Use when working with the AutoCAD application. 

¶ AcCui.dll. Use when working with customization (CUIx) files. 

Namespace – A component of a loaded assembly. Namespaces are used to access and 
organize classes and methods of an API. 

¶ Autodesk is the parent namespace in the AutoCAD .NET API, which contains several 
other important namespaces. AutoCAD is located under the Autodesk namespace 
which contains all the namespaces related to AutoCAD as you might have guessed. 

The namespaces located under AutoCAD is where you start seeing the actual 
structure of the libraries related to AutoCAD. 

 

The following are the most frequently used namespaces and the ones used in these 
handouts: 

o Runtime. Required to define commands and AutoLISP functions. 

o ApplicationServices. Required to work with the application and access open 
drawings. 

o DatabaseServices. Required to work with objects in a drawing. 

https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/autocad-net-developers-guide


 

 

Page 4 

o Geometry. Required to work with data types and methods related to 
coordinates and other math related tasks used to define geometry. 

o EditorInput. Required to display messages at the Command prompt and 
request input from a user. 

Note: You use the Imports keyword to enable the use of a namespace in your project. 

Download and Install Visual Studio 2019 Community Edition 

If you don’t have a license to Visual Studio 2019, you can download and use Visual Studio 2019 
Community for free. Folow these steps to download and install Visual Studio Community: 

1. Browse to the Visual Studio Community page on the Microsoft website. 

Go to https://visualstudio.microsoft.com/vs/community/. 

2. Click Download Visual Studio. 

3. After you download the Visual Studio Installer, click Open File or double-click the file in 
the Downloads folder.  

4. If you are prompted with “Do you want to allow this app to make changes to your 
device?” message, click Yes. 

5. In the Visual Studio Installer message box, click Continue. 

6. In the Installing dialog box, under Desktop & Mobile, check .NET Desktop Development. 

 

7. In the Installation Details area, check the following additional components: 

¶ .NET Framework 4.7 

¶ .NET Framework 4.8 

8. Click Install. 

9. When the installer finishes, sign into your Microsoft Account (or create a new one) or 
click Not Now, Maybe Later. to start Visual Studio. 

https://visualstudio.microsoft.com/vs/community/


 

 

Page 5 

10. In the Visual Studio, Start with a Familiar Environment dialog box, click Start Visual 
Studio. 

11. Close Visual Studio and the Visual Studio Installer, and then continue to the next 
sections to install the ObjectARX SDK and the AutoCAD 2022 .NET Wizard. 

Download and Install the ObjectARX SDK 

You will need to install the ObjectARX 2022 SDK to access the AutoCAD .NET libraries, and the 
AutoCAD .NET Developer’s and Reference Guides. The following steps explain how to 
download and install the ObvjectARX 2022 SDK: 

1. Browse to the ObjectARX section of the AutoCAD Developer’s Center website. 

Go to https://www.autodesk.com/developer-network/platform-
technologies/autocad/objectarx-license-download. 

2. Scroll down and fillout the information for the License & Download Agreement. 

3. Click “I Agree” and then click Download. 

4. On the AutoCAD Object Downloads page, click the link for your target release of 
AutoCAD. 

5. Once the file has been downloaded, double-click the EXE file and click OK to accept the 
defaults. 

By default, the SDK files are installed to: 

C:\Autodesk\ObjectARX_for_AutoCAD_2022_Win_64bit_dlm 

Download and Install the AutoCAD 2022 .NET Wizard 

The AutoCAD 2022 .NET Wizard simplifies the process of creating a new VB .NET project. The 
exercises in this handout utilize the wizard, so you will want to install it. The following steps 
explain how to dopwnload and install the AutoCAD 2022 .NET Wizard: 

1. Browse to the AutoCAD Developer’s Center website. 

Go to https://www.autodesk.com/developer-network/platform-technologies/autocad. 

2. Scroll down to the Tools section and click the AutoCAD 2022 DotNet Wizard link. 

3. On the GitHub page, click Download. 

The Download can also be found here: https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wi
zards.zip 

4. Once the file has been downloaded, extract the contents of the ZIP file. 

The contents don’t need to be extracted to a specific folder. 

5. Open the folder in which you extracted the ZIP file and doble-click the 
AutoCADNetWizards.msi file. 

6. If the Windows Protected Your PC message box appears, click More Info and then click 
Run Anyway. 

7. Follow the on-screen prompts and accept all the default values. 

https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip


 

 

Page 6 

3 Compatibility 

Projects created with .NET and the AutoCAD Managed .NET API are built for specific releases 
because of the binary compatibility of the .NET API libraries. So a .NET project created for 
AutoCAD 2021 might not work with AutoCAD 2020. However, a project built for AutoCAD 2020 
may run in AutoCAD 2021 and AutoCAD 2022. 

Keep the following in mind when compatibility might be a concern: 

¶ Use the .NET Framework supported by the earliest target release of AutoCAD. AutoCAD 
will let you know if the .NET application is compatible or not when you attempt to load it. 
If it is not compatible, you will see a series of error messages at the command line. 

The .NET Framework 4.8 release is recommended for AutoCAD 2021 and AutoCAD 
2022. See the Which Edition of Microsoft Visual Studio to Use 
(https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-
9A8C-8230AAC48CB4) topic in the AutoCAD Developer documentation to know which 
.NET Framework release you should use for the target release of AutoCAD. 

¶ Use the .NET and ActiveX/COM libraries for the earliest target release of AutoCAD that 
you want to support. This will help you to avoid the use of new functions that might only 
exist in the latest APIs. 

¶ Typically, when upgrading a project from an earlier release, you should only need to 
reference the new .NET library files and rebuild the application. 

¶ Make sure you reference the correct libraries based on the target OS release. If you are 
building applications for AutoCAD 2019 and earlier, you will need to have two different 
projects, one for 32-bit and another for 64-bit applications based on the liubraries you 
are using. 

4 Building a VB.NET Project 

Before you can get started with defining your custom functions, you will want to download the 
sample files for this session and need to create a new project in Visual Studio 2019 or Visual 
Basic 2019 Community Edition based on your preference. 

The exercises in this handout require you to download and setup a folder for this session. These 
steps explain how to download and extract the contents of this session’s sample files: 

Download and Setup the Dataset Folder 

1. Browse to this session’s page on the Autodesk University website. 

Go to https://www.autodesk.com/autodesk-university/conference/overview and search 
on the session ID SD500025. 

2. In the search results, click the entry for this session. 

3. On the session’s page, click Downloads and then click Material. 

The dataset should start downloading to your local drive. 

4. Once the dataset has been downloaded, extract the contents of the ZIP file to a folder 
structure similar to the following (just make sure to use the same location throughout): 

C:\Datasets\SD500025 

https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://www.autodesk.com/autodesk-university/conference/overview


 

 

Page 7 

Create a New VB.NET Project with the .NET Wizard 

1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019) 

2. In Microsoft Visual Studio, click Create a New Project (or click File menu > New Project). 

 

3. In the Create a New Project dialog box, in the Search text box, type AutoCAD. 

If no matching results are found, clear the Search text box and search for AutoCAD 2022 
VB plug-in. If it isn’t found, try one of the following: 

¶ Go to Appendix1: AutoCAD .NET Wizard Not Showing in Visual Studio and try 
some of the steps there to resolve the problem. 

¶ Go to Appendix 2: Create a new VB .NET Project without the .NET Wizard and 
create a project from scratch. It will take a few more steps, but the .NET Wizard 
isn’t required though it simplifies the setup process. 

4. Choose AutoCAD 2022 VB plug-in and click Next. 

 

5. In the Configure Your New Project dialog box, in the Project Name text box, type 
MyLISPFunctions. 

6. Under Location, click the Ellipsis […] button. 

7. In the Project Location dialog box, browse to the location of the dataset for this session. 
Double click the Dataset folder and click Select Folder. 

The location might look something like: 

C:\Datasets\SD500025  

  



 

 

Page 8 

8. Click the Framework drop-down list and choose .NET Framework 4.8. 

If you don’t have 4.8 installed, you can choose .NET Framework 4.7 as well. 

  

9. Click Create. 

10. In the AutoCAD .NET Wizard Configurator dialog box, click the first Ellipsis [...] button 
and browse the location of the Inc folder in the ObjectARX SDK. 

By default, the folder is at: 

C:\Autodesk\ObjectARX_for_AutoCAD_2022_Win_64bit_dlm\inc 

  



 

 

Page 9 

11. Click the second Ellipsis […] button and browse to the folder of the acad.exe file. 

By default, AutoCAD 2022 is installed in the folder: 

C:\Program Files\Autodesk\AutoCAD 2022 

  

12. Optionally, check AutoCAD Interop Common and AutoCAD Interop if you plan on using 
the AutoCAD ActiveX/COM API with your .NET application. 

Note: You can’t use or access the VLA-OBJECT data type with your custom AutoLISP 
functions. 

13. Click OK. 

14. Click File menu > Save All. 

Using the AutoCAD .NET Wizard simplifies the learning curve of setting up a new VB .NET 
project, but it also hides a few things that you should know as well when you are first getting 
started. Appendix 2: Create a New VB .NET Project without the .NET Wizard later in this 
handout explains how to create a VB.NET project from scratch without using the AutoCAD .NET 
Wizard. 



 

 

Page 10 

5 Create a Command 

Commands are the most common way of exposing functionality defined in a VB.NET project to 
a user and for use in an AutoLISP program. To define a command, you prefix a Public  method 

with the CommandMethod attribute. This lets AutoCAD know that the following method should 

be defined in AutoCAD as a command when it is loaded. 

Any Public  method in a VB.NET project can be used to define a command, but it should not 

be defined to accept any parameters. Parameters are used to pass values into a method, much 
like the variables defined before the backslash of a defun  expression in AutoLISP. If your 

command requires input, you must prompt the user for the appropriate values at the Command 
prompt or use a dialog box. 

Add the Code to Create a Command 

These steps explain how to define a command with the global name of HELLOAU and a local 
name of BONJOURAU. The command prints the text “Welcome to AU 2021!” to the Command 
window. 

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb. 

The file will open in an editor window, and if you scroll through the file you will notice 
there are several boiler plate templates for commands and functions. This was added as 
part of the AutoCAD 2022 VB plug-in template. 

If you don’t have myCommands.vb in your project, see Step 17under the Appendix 2: 
Create a new VB .NET Project without the .NET Wizard section of this handout.  

2. Scroll to the bottom of the file and click in the line above End Class  and then press 

Enter. 

3. On the new blank line, enter the following code: 

 <CommandMethod( "MyGroup" , " HelloAU" , "BonjourAU" ,  
                CommandFlags.Modal)>  
 Public  Sub HelloAU () ' This method can have any name  
     Dim docEditor As Editor = 
         Application .DocumentManager.MdiActiveDocument.Editor  
     docEditor. WriteMessage ( "Welcome to AU 2021!" )  
 End Sub 

MyGroup – Group name used to organize related commands. Defined groups can be 
seen with the Commands option of the ARX command in AutoCAD. 

HelloAU – Global command name. 

BonjourAU – Local/regional command name. 

CommandFlags.Modal – Command flags used to control the behavior of the command. 

4. Click the File menu > Save All to save the changes made to the project. 

  



 

 

Page 11 

6 Build and Load a .NET Assembly 

After you have defined the methods that represent the new commands or functions to be made 
available in AutoCAD, you must build (often referred to as compile) your project into a .NET 
assembly – or DLL. Once a DLL is been built, you use the NETLOAD command to load it into 
AutoCAD. 

Note: DLLs loaded into AutoCAD cannot be unloaded from the current session. However, they 
are also not persistent between sessions unless they are loaded through the Windows Registry. 

For information on loading a .NET DLL using the Windows Registry, see the Develop 
Applications with VB.NET and C# > Distribute Your Application topic 
(https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-
3C7F212A7CAF) in the AutoCAD .NET Developer’s Guide. 

Build and Load a .NET Assembly 

You build a DLL from your project using the Build menu within Microsoft Visual Studio. The 
following steps explain how to build and load your DLL into AutoCAD, and then start the 
HelloAU command. 

Note: For information on how to debug and build your project for release, see Appendix 1: 
Debugging and Building a VB .NET Project for Release. 

1. With your project open in Visual Studio, click Build menu > Build MyLISPFunctions. 

The build status and location of your DLL are displayed in the Output window. 

 

If the Output window is not displayed, click View menu > Output. 

2. If any errors are displayed in the Output window, make the required changes to the code 
and try to build the project again. 

For example, if you see the following in the Error List, double-click the entry to open the 
file in the editor window. 

 

https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-3C7F212A7CAF
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-3C7F212A7CAF


 

 

Page 12 

In the editor window for this particular error, replace the two instances of: 

 Global . AutoCAD_VB_plug_in .My.MySettings  

With the following: 

 Global . MyLISPFunctions .My.MySettings  

Note: This might happen if the AutoCAD .NET Wizard doesn’t properly update the files 
in the template while creating the project.  

3. If you had to fix any errors in Step 2, rebuild the project again following Step 1. 

4. Launch AutoCAD. 

5. In AutoCAD, at the Command prompt, enter netload. 

6. In the Choose .NET Assembly dialog box, browse to the location of the DLL displayed in 
the Output window and select it. Click Open. 

By default, your DLL should be built to: 

C:\ Dataset\SD500025\MyLISPFunctions\MyLISPFunctions\bin\Debug\ 

Tip: You can also use the Command function with the NETLOAD command if you want 
to load the DLL using AutoLISP or a macro. There are no AutoLISP functions specific for 
loading a .NET DLL like there is for AutoLISP (LOAD) or ObjectARX (ARXLOAD) files. An 

example of using NETLOAD at the command line is: 

(command "netload" "C:/MyUtilities/MyLISPFunctions.dll")  

7. If the Security – Unsigned Executable File dialog box is displayed, click Load Once. 

 

  



 

 

Page 13 

8. At the Command prompt, enter bonjourau. 

 

The message “Welcome to AU 2021!” is displayed in the Command window. 

 

9. At the Command prompt, enter helloau. 

You may notice the command didn’t appear in the AutoComplete list but the message 
was output to the Command window as expected. It doesn’t appear in the AutoComplete 
list because it is our global command name. 

10. At the Command prompt, enter _helloau. 

This time, you should have noticed that it appeared in the AutoComplete list 

11. At the Command prompt, enter (command "bonjourau"). 

The command runs as expect with the COMMAND function, just like a standard AutoCAD 

command would such as LINE or CIRCLE. 

  



 

 

Page 14 

7 Define an AutoLISP Function 

Now that the basics are out of the way, it’s time to get down to the fun stuff and that is defining a 
custom AutoLISP function. Defining an AutoLISP function is similar to creating a custom 
command, but instead of the CommandMethod attribute you use the Li spFunction  attribute. 

The method you create in .NET for your custom AutoLISP function must be declared as Public  

and accept a single parameter of the ResultBuffer  type only. ResultBuffer  is a data type 

that is specific to AutoCAD and is similar to a list in AutoLISP. 

 ' This method can have any name  
 <LispFunction ( "MyLispFunction" , "MyLispFunctionLocal" )> _  
 Public  Function  MyLispFunction ( ByVal  args As ResultBuffer )  
     ' Put your command code here  
 
     ' Return a value to the AutoCAD Lisp Interpreter  
   Return 1 
 End Function  

While it might look like the custom AutoLISP function only allows for a single parameter, that 
isn’t true as the ResultBuffer  represents an array of values; so it can be empty or have one 

or more values. For example, the following usages of the previous function are all valid: 

 (MyLispFunction)  
 (MyLispFunction "One")  
 (MyLispFunction "One" "Two")  
 (MyLispFunction '("One" "Two"))  

The values of a ResultBuffer  correspond to one of the data types or data structures that 

AutoLISP supports. These data types and structures are listed in the 
Autodesk.AutoCAD.Runtime.LispDataType  enumerator. 

 

Values of a ResultBuffer  are defined as the TypedValue  data type. When you create a new 

or receive a TypedValue , it contains two properties. The first property is known as the Type 

Code which is commonly one of the constants in the LispDataType  enumerator. 

The second property is the actual value you assigned to the TypedValue . When you define a 

custom AutoLISP function, it should always return a value of the TypedValue  or 

ResultBuffer  type. Use a TypedValue  when you want to return a single value like a string, 

integer, or nil  or a ResultBuffer  when you want to return a list of values. 



 

 

Page 15 

For example, to return the text "String" from an AutoLISP function you might use: 

 Return New TypedValue ( LispDataType .Text, "String" )  

To return a list containing an integer value of 0 and the string “INSERT” you might use: 

 Dim rbRt As New ResultBuffer  
 rbRt. Add( New TypedValue ( LispDataType .Int16, 0))  
 rbRt. Add( New TypedValue ( LispDataType .Text, "INSERT"))  
 Return  rbRt  

To return a list containing a dotted pair of (0 . "INSERT") you might use: 

 Dim rbRt As New ResultBuffer  
 rbRt. Add( New TypedValue ( LispDataType .Int16, 0))  
 rbRt. Add( New TypedValue ( LispDataType .DottedPair))  
 rbRt. Add( New TypedValue ( LispDataType .Text, "INSERT"))  
 Return  rbRt  

To return a list containing two nested lists of ((0 . "INSERT") (0 5 0)) you might use: 

 Dim rbRt As New ResultBuffer  
 rbRt. Add( New TypedValue ( LispDataType .ListBegin))  
 rbRt. Add( New TypedValue ( LispDataType .ListBegin))  
 rbRt. Add( New TypedValue ( LispDataType .Int16, 0))  
 rbRt. Add( New TypedValue ( LispDataType .DottedPair))  
 rbRt. Add( New TypedValue ( LispDataType .Text, "INSERT"))  
 rbRt. Add( New TypedValue ( LispDataType .ListEnd))  
 rbRt. Add( New TypedValue ( LispDataType .Point3d,  New Point3d (0, 5, 0)))  
 rbRt. Add( New TypedValue ( LispDataType .ListEnd))  
 Return  rbRt  

Add the Code to Define an AutoLISP Function 

These steps explain how to define a custom AutoLISP function named printargs . The 

function will accept no arguments, or one or more arguments. When a value is provided in an 
argument, its type code and value are printed in the Command window. 

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb. 

2. Scroll to the bottom of the file and click in front of the End Class  line and press Enter 

twice. 

3. On the new blank line just above End Class , enter the following code: 

 ' Defines an AutoLISP function that prints the  
 ' type  code and value for each argument  
 ' Usage: (printargs '((0 . "INSERT") (0 5 0)))  
 <LispFunction ( "PrintArgs" )>  
 Public  Function  PrintArgs( ByVal  rb As ResultBuffer )  
     ' Gets the AutoCAD editor  
     Dim docEditor As Editor = 
         Application .DocumentManager.MdiActiveDocument.Editor  
 



 

 

Page 16 

     ' Checks to see if any values were passed into the function  
     If Not rb = Nothing  Then 
         ' Step through each value passed  
         For Each val As TypedValue In rb  
             ' Output t he type and value  
             docEditor. WriteMessage (vbLf & "Type: "  &  
                                    val.TypeCode. ToString ())  
             If IsNothing (val.Value) = False  Then 
                 docEditor.WriteMessage(vbLf & "Value: "  & 
                                        val.Value. ToString () &  
                                        vbLf)  
             Else  
                 docEditor. WriteMessage (vbLf & "Value: nil"  & vbLf)  
             End If  
         Next  
     Else  
         docEdit or. WriteMessage (vbLf & "No arguments  provided"  & vbLf)  
     End If  
 
     ' Return nil  
     Return New TypedValue ( LispDataType .Nil)  
 End Function  

4. Click File > Save All to save the changes made to the project. 

5. Build and load the DLL into AutoCAD. 

Note: If the DLL is loaded into AutoCAD already, you will need to close and restart 
AutoCAD so you can build the DLL. 

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter 
(printargs). 

The text message "No arguments provided" appears in the Command window. 

 

7. At the Command prompt, enter (printargs "Hello AU!"). 

The argument is identified as LispDataType.Text (5005) with a value of "Hello AU!". 

 

8. At the Command prompt, enter (printargs '((0 . "INSERT") (0 5 0))). 



 

 

Page 17 

The arguments are identified as the following: 

¶ LispDataType.ListBegin (5016) with a value of -1 

¶ 0 with a value of "INSERT" 

Note: When a dotted pair is provided, the first value in the pair is its type code. 

¶ LispDataType.Point3d (5009) with a value of (0,5,0) 

¶ LispDataType.ListEnd (5017) with a value of -1 

 

Note: The printargs  function always returns nil , which is like many other AutoLISP 

functions. The returned nil  can be captured with (princ)  so it doesn’t output to the 

Command window. 

Working with Dotted Pair 

Dotted pairs are commonly used to represent DXF data of an object, but that isn’t always the 
case. When defining a dotted pair, don’t use a type code greater than 5000. Type code values 
greater than 5000 are reserved for AutoLISP data types. Type codes typically used to represent 
DXF data are represented by the DxfCode  enumerator constants. 

 If val.TypeCode >= 5000 Then 
     Dim lspDataType As LispDataType = val.TypeCode  
     docEditor. WriteMessage (vbLf & "Type: "  &  
                            lspDataType. ToString ())  
 Else  
     Dim dxfCodeType As DxfCode = val.TypeCode  
     docEditor. WriteMessage (vbLf & "Type: "  &  
                            dxfCodeType. ToString ())  
 End If  

The above code is a modification of the following line in the printarg function. 

 docEditor. WriteMessage (vbLf & "Type: "  &  
                        val.TypeCode. ToString ())  

  



 

 

Page 18 

Instead of outputting the integer value of the type code assigned to the TypedValue , it uses 

the actual enumerators to get the name of the constant value. 

 

Other Examples of AutoLISP Functions 

The following code example is of a custom AutoLISP function that expects two arguments which 
are of the string data types. The function validates it was passed 2 and only arguments and then 
assigns each argument to a string variable if possible before displaying the values to the 
Command window. The function returns a value of LispDataType.Nil . 

 ' Defines an AutoLISP function named Employee  
 ' Usage: (employee "Lee Ambrosius" "12345")  
 <LispFunction ( "Employee" )>  
 Public  Function  Employee( ByVal  rb As ResultBuffer )  
     ' Gets the AutoCAD editor  
     Dim docEditor As Editor = 
         Application .DocumentManager.MdiActiveDocument.Editor  
 
     ' Checks to see if any values were passed into the AutoLISP function  
     If Not rb = Nothing  Then 
         If rb. AsArray ().Length <= 2 Then 
             Dim name As String  = "" , id As String  = ""  
             Dim count As Integer  = 0  
 
             ' Step through each value passed  
             For Each val As TypedValue In rb  
                 ' Check to see if the value passed was a string  
                 If (val.TypeCode = LispDataType .Text) Then 
                     ' If a string, assign it to the correct  variable  
                     Select Case  count  
                         Case 0 
                             name = val.Value. ToString ()  
                         Case 1 
                             id = val.Value. ToString ()  
                     End Select  
                 Else  
                     ' Display error message if an argument wasn't string  



 

 

Page 19 

                     docEditor. WriteMessage (vbLf &  
                                    "; error: argument not of STR type"  &  
                                    vbLf )  
                     ' Return nil  
                     Return New TypedValue ( LispDataType .Nil)  
                 End If  
 
                 ' Increment s the counter  by 1  
                 count = count + 1  
             Next  
 
             ' Output the two string values  
             docEditor. WriteMessage (vbLf & "Name: "  & name & 
                                    vbLf & "ID: "  & id  & vbLf )  
         Else  
             ' Display error message when more than 2 values are passed in  
             docEditor. WriteMessage (vbLf &  
                                    "; error: too many arguments"  & vbLf )  
         End If  
     Else  
         ' Display error message when no values are passed in  
         docEditor. WriteMessage (vbLf &  
                                "; error: too few arguments"  & vbLf )  
     End If  
 
     ' Return nil  
     Return New TypedValue ( LispDataType .Nil)  
 End Function  

When the above function is loaded, try the following AutoLISP statements to see how errors are 
handled: 

 (employee "Lee Ambrosius" "12345") 
 (employee "Lee Ambrosius" 12345) 
 (employee) 
 (employee "Lee" "Ambrosius" "12345") 

The following example demonstrates how you can return a string from an AutoLISP function. 

 ' Defines an AutoLISP function that returns a string  
 ' Usage: ( stringreturn )  
 <LispFunction ( "StringReturn" )> _  
 Public  Function  StringReturn( ByVal  rb As ResultBuffer )  
     ' Return a string value from the function  
     Return New TypedValue ( LispDataType .Text, "My Value" )  
 End Function  

Note: The above examples, the completed project in the dataset files for this session also 
contains a function named FuncReturn. The function demonstrates how to return many of the 
common data types to AutoLISP from VB.NET. 



 

 

Page 20 

Work with AutoLISP User-Defined Variables 

Along with working with values passed into an AutoLISP function, you can get and set the 
values of an AutoLISP user-defined variable. Accessing AutoLISP user-defined variables allows 
you to use global variables across AutoLISP programs and custom functions defined with VB 
.NET. 

The way you work with AutoLISP user-defined variables is through the use of the following 
methods: 

GetLispSymbol  – Gets the value assigned to an AutoLISP user-defined variable. The 

method accepts the name of the variable for which to get its value and returns an Object  

that contains the value of the variable. The GetType  method of the Object  can be used to 

determine the type of data that the Object  represents. 

SetLispSymbol  – Assigns a value to an AutoLISP user-defined variable. This method 

takes the name of the variable for which you want to assign a value and an Object  or 

TypedValue  type that contains the value to be assigned to the variable.  

Note: If you are using AutoCAD 2012 or earlier, to get and set the value of AutoLISP user-
defined variable, you will have to import the acedGetSym  and acedPutSym  methods from the 

acad.exe or accore.dll file. See the Using the acedGetSym  and acedPutSym  Methods section 

later in this handout and the completed project available as part of this session’s materials for 
examples. 

Get and Set User-Defined AutoLISP Variables 

These steps explain how to define two custom AutoLISP functions named fetchfoo  and 

setfoo . The functions don’t require any arguments. setfoo  assigns a string to the AutoLISP 

user-defined variable foo, while fetchfoo  gets the data type of the value assigned to the 

AutoLISP user-defined variable foo. Both of the functions return the value assigned to a 
TypedValue  type. 

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb. 

2. Scroll to the bottom of the file and click in front of the End Class  line and press Enter 

twice. 

3. On the new blank line just above End Class , enter the following code: 

 ' Defines or updates the FOO variable  
 ' Usage: ( setfoo )  
 <LispFunction ( "SetFoo" )>  
 Public  Function  SetFoo( ByVal  rb As ResultBuffer)  
     ' Gets the AutoCAD editor and current document  
     Dim docEditor As Editor = 
         Application .DocumentManager.MdiActiveDocument.Editor  
     Dim doc As Document = 
         Application .DocumentManager.MdiActiveDocument  
 
     Dim typeValue As New TypedValue ( LispDataType .Nil)  
 



 

 

Page 21 

     If  rb = Nothing  Then 
         typeValue = New TypedValue ( LispDataType .Text, "Default Value" )  
         docEditor. WriteMessage (vbLf + "String assigned to FOO"  + vbLf)  
     End If  
 
     ' Assign the value to FOO  
     doc. SetLispSymbol ( "foo" , typeValue)  
 
     Return  typeValue  
 End Function  
 
 ' Returns the data type assigned to the FOO variable  
 ' Usage: ( fetchfoo )  
 <LispFunction ( "FetchFoo" )>  
 Public  Function  FetchFoo ( ByVal  rb As ResultBuffer )  
     ' Gets the current document  
     Dim doc As Document = 
         Application .DocumentManager.MdiActiveDocument  
 
     Dim lspVal As Object  = doc. GetLispSymbol ( "foo" )  
     Dim typeValue As New TypedValue ( LispDataType .Nil)  
 
     If IsNothing (lspVal) = False  Then 
         typeValue = New TypedValue ( LispDataType .Text,  
                                    lspVal. GetType().Name)  
     End If  
 
     Return  typeValue  
 End Function  

4. Click File > Save All to save the changes made to the project. 

5. Build and load the DLL into AutoCAD. 

Note: If the DLL is loaded into AutoCAD already, you will need to close and restart 
AutoCAD so you can build the DLL. 

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter !foo. 

nil  should be returned and appear in the Command window since the variable hasn’t 

been defined or initialzed yet. 

 

  



 

 

Page 22 

7. At the Command prompt, enter (setfoo). 

The message "String assigned to FOO" appears in the Command window along with the 
text string of "Default Value" which is the value returned by the function and assigned to 
the FOO variable. 

 

8. At the Command prompt, enter !foo. 

"Default Value"  is returned and appears in the Command window. 

 

9. At the Command prompt, enter (fetchfoo). 

" String "  is returned and appears in the Command window because the foo  variable 

is assigned a value of the data type String. 

 

10. At the Command prompt, enter (setq foo '((0 . "INSERT") (0 5 0))). 

A list of a dotted pair and a 3D point is assigned to the foo  variable. 

11. At the Command prompt, enter (fetchfoo). 

" TypedValue[] "  is returned and appears in the Command window because the foo  

variable is assigned an array of TypedValue  types. 

 

  



 

 

Page 23 

8 Request User Input 

Requesting user input at the Command prompt is an important part of most custom applications 
in AutoCAD. The AutoCAD Managed .NET API gives you access to many of the same input 
functions found in AutoLISP, except you have much greater control over their behavior. With the 
user input functions in Managed .NET, you can determine if the user finished entering input, 
used a keyword, or cancelled the input method. 

There are three parts to the input methods in VB .NET; setup, request, and test. First you setup 
the prompt and keywords, and any of the available input options you want to use. Then you 
request input from the user before finally testing the status of the input provided. 

Input methods are part of the Editor  class in the AutoCAD Managed .NET API. You can 

reference the current editor by using the following code snippet in your VB .NET application. 

 Dim docEditor As Editor = _  
     Application .DocumentManager.MdiActiveDocument.Editor  

After you get the current editor, you can use the Editor  object to determine which input 

methods are available. Hint, much like AutoLISP, they start with ‘Get’. 

 

After you identify the user input method you want to use, you can determine everything you 
need to setup the method for use. All of the Get*  input methods require the use of a 

PromptOptions class. PromptOptions is not an actual class found in the AutoCAD Managed 
.NET API, but is a way to reference a grouping of different classes that are related to prompts 
and options for the Get*  input methods. 

For example, you use the GetPoint  method to prompt a user for a point. The GetPoint  

method requires you to pass it a value of the Pro mptPointOptions  type. When you assign a 

variable as the PromptPointOptions  type, you can specify the prompt string and any 

keywords that you might want to use. You can also change these and other behavior properties 
after the variable is defined. In AutoLISP, you would use the Initget  function to do this as well 

as specify a base point in the case of the GetPoint  function itself. 



 

 

Page 24 

 

After you define the appropriate properties for the PromptOptions type, you then use the object 
with the correct input method. 

 Dim pPointOpts As New PromptPointOptions(vbLf + _  
                                         "Specify insertion point: " )  

 docEditor.GetPoint(pPointOpts)  

While the above code snippet is valid, it is not helpful as the input that the user provides is not 
stored for you to use. As previously mentioned, each input method requires you to specify a 
variable defined as the appropriate PromptOptions type to control the behavior of the input 
method. There is also a specific set of classes that are available for capturing the input specified 
by the user. These are referred to as the PromptResult classes. 

 

The PromptResult classes allow you to check the status of a Get*  input method as well as to 

get the value the user specified. Commonly, you are going to check the Status  property 

against the following constants: 

¶ PromptStatus.OK  - User provided valid input 

¶ PromptStatus.Cancel  - User pressed Esc and cancelled the current input 

¶ PromptStatus.Keyword  - User entered one of the available keywords 



 

 

Page 25 

Each PromptResult class allows you to get the value entered or when there is a keyword, the 
full text string of the keyword value. 

Add a Basic Request for User Input to an AutoLISP Function 

These steps explain how to define a custom AutoLISP function named pointorkword . The 

function prompts the user for a point using the GetPoint  method. It also demonstrates how 

you can get the point specified, the keyword entered, or check whether the user pressed Esc. 
The function returns a value assigned to a TypedValue  type. 

1. In Visual Studio, double-click myCommands.vb from the Solution Explorer. 

2. Scroll to the bottom of the file and click in front of the End Class  line and press Enter 

twice. 

3. On the new blank line just above End Class , enter the following code: 

 ' Defines an AutoLISP function that prompts for a point or keyword  
 '  Usage:  (pointorkword)  
 <LispFunction ( "PointOrKWord" )>  
 Public  Function  PointOrKWord ( ByVal  rb As ResultBuffer )  
     Dim docEditor As Editor  = 
         Application .DocumentManager.MdiActiveDocument.Editor  
 
     Dim typeValue As New TypedValue ( LispDataType .Nil)  
 
     Dim pPointOpts As New PromptPointOptions (vbLf +  
                            "Specify a point or [Layer/Undo]: " ,  
                            "Layer Undo" )  
 
     Dim pPointResult As PromptPointResult  =  
         docEditor. GetPoint (pPointOpts)  
 
     ' User specified a point  
     If  pPointResult.Status = PromptStatus .OK Then 
         typeValue = New TypedValue ( LispDataType .Point3d,  
                                    pPointResult.Value)  
         ' User entered a keyword  
     ElseIf  pPointResult.Status = PromptStatus .Keyword Then 
         typeValue = New TypedValue ( LispDataType .Text,  
                                    pPointResult.StringResult)  
         ' User cancelled the input  
     ElseIf  pPointResult.Status = PromptStatus .Cancel Then 
         MsgBox( "Input cancelled" )  
     End If  
 
     Return  typeValue  
 End Function  

4. Click File > Save All to save the changes made to the project. 



 

 

Page 26 

5. Build and load the DLL into AutoCAD. 

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter (setq 
rtVal (pointorkword)). 

The prompt message Specify a point or [Layer Undo]:  is displayed in the 

Command. 

 

7. At the Command prompt, pick a point in the drawing. 

The point specified in the drawing is assigned to the rtVal variable. 

8. At the Command prompt, enter (setq rtVal (pointorkword)) and then enter L. 

The Layer keyword is assigned to the rtVal variable as a string. 

9. At the Command prompt, enter the following AutoLISP statements: 

(defun c:TestInput ()  
    (setq  pt1 (getpoint "Specify a point with AutoLISP: "))  
    (setq pt2 (pointorkword))  
    (alert "AutoLISP continued.")  
)  

10. With the TestInput command defined using AutoLISP, at the Command prompt, enter 
testinput. 

11. At the Specify a point with AutoLISP  prompt, press ESC. 

You should notice the TestInput command was cancelled. 

12. At the Command prompt, enter testinput again. 

13. At the Specify a point with AutoLISP  prompt, specify a point in the drawing this 

time. 

14. At the Specify a point or [Layer Undo]:  prompt, press ESC. 

You should notice the TestInput command isn’t cancelled this time and a message box 
with the text Input cancelled  was displayed. This message box is from the 

pointorkword  function. 

15. Click OK to dismiss the message box with the text Input cancelled . 

16. Click OK to dismiss the alert message with the text AutoLISP continued  which is 

from the AutoLISP defined command TestInput. 

As shown with the user input methods in the AutoCAD .NET API, you have greater 
control over how your custom programs can continue or end execution. 

  



 

 

Page 27 

9 Create and Display a Dialog Box 

AutoLISP allows you to create and use DCL to create basic dialog boxes, but in many ways it 
ends up being more of an art than actual science in getting the DCL dialog box to display 
correctly. VB .NET provides an integrated dialog box editor that can be combined with what you 
have learned about creating custom AutoLISP functions already up to this point. 

You can pass values to and get values from the dialog box just like you have already seen in 
previous examples of custom functions, but you will want to make sure that you are working with 
lists in AutoLISP and TypedValue arrays or ResultBuffe rs  in VB .NET. If you use lists, you 

can pass in any number of values you want to use for the dialog box, and also return many  
values back to your existing AutoLISP applications. 

While it takes a little bit of effort to learn how to work with dialog boxes in VB .NET, the effort 
pays off in the end with a modern dialog box that can take advantage of a wide range of controls 
that are not available in DCL. 

When you create a dialog box in VB .NET, you can start with one of the available templates 
such as About Box, Splash Screen, or Explorer Form or just a basic dialog box. You access the 
list of available dialog box related templates by clicking Project menu > Add New Item. 

 

  



 

 

Page 28 

The Dialog template is going to be the one that you will find yourself using commonly. After you 
add a dialog box to your project, you use the Toolbox to add controls to your dialog box and the 
Properties window to edit the properties of the dialog box or a selected control. The Properties 
window functions much like the Properties palette in AutoCAD. 

 

  



 

 

Page 29 

Create a Form in VB.NET 

The following steps explain how to create a basic dialog box using the Dialog template. This 
dialog box will allow the user to choose from several standard notes to insert into the drawing. 
You will add several labels, a text box, a command button, and a drop-down list. By default, the 
Dialog template provides you with the standard OK and Cancel buttons. 

1. In Visual Studio, with the MYLISPFunctions open, click Project > Add New Item (or right-
click the MYLISPFunctions node in the Solution Explorer and choose Add > New Item). 

 

2. In the Add New Item dialog box, Installed Components, expand Common Items and 
choose Windows Forms. 

3. In the Items list, select Dialog. 

 

  



 

 

Page 30 

4. In the Name text box, select the default text and enter InsNote. Click Add. 

 

The new dialog box is displayed in the Form editor. 

5. Click View menu > Toolbox to display the Toolbox window. 

 

By default, the Toolbox is displayed along the left side of the application window. 

6. Click the Toolbox label to expand it. 

 

If you click the Pushpin that is displayed in the titlebar of the Toolbox when expanded, 
the Toolbox will remain expanded until you click the Pushpin again. 



 

 

Page 31 

7. In the Toolbox, click the ► next to All Windows Forms if it is currently expanded. 

8. Click ► next to Common Controls if it is currently collapsed. 

 

9. Double-click the Label control twice. 

Two new Labels are added to the dialog. 

10. Then double-click the TextBox, ComboBox, and Button controls once each. 

Your form should look similar to the following image. 

 

11. Click the Pointer tool, and then arrange and resize the controls and dialog box so it looks 
similar to the following image. 

 

  



 

 

Page 32 

When the Pointer tool is active, you can manipulate a control in one of the following 
ways: 

¶ Click a control or the dialog box to display its resizing handles (or grips). Click and 
drag the handle to resize the control in the direction you drag.  

¶ Click and drag a control to move it on the dialog box. 

Note: It is best to position the controls and then resize the dialog box, the OK and 
Cancel buttons will reposition themselves when resizing the dialog box. 

12. Select Label1 on your dialog box and use the Properties window to change the control’s 
properties. 

Note: If the properties window isn’t open, click View > Properties Window. 

Change the following properties for the Label1 control: 

¶ Name: lblInsPoint 

¶ Text: Insertion Point: 

 

 

Tip: If you struggle with finding a property using the Categorized display of the 
Properties window, click Alphabetical to sort the properties by name. 

 

  



 

 

Page 33 

13. Change the properties for the other controls to the following: 

Label2 

¶ Name: lblNoteType 

¶ Text: Note Type: 

Button1 

¶ Name: btnInsPoint 

¶ Text: Pick 

ComboBox1 

¶ Name: cmbNoteTypes 

¶ Text:  

¶ DropDownStyle: DropDownList 

TextBox1 

¶ Name: txtInsPoint 

¶ Text:  

¶ Enabled: False 

When the dialog box is displayed, the user will be able to interact with all controls except 
the labels and TextBox1 which was disabled after changing the Enabled property to 
False. By default, labels usually don’t allow for user interaction as they are commonly 
used to provide information to the user. 

14. Click on the dialog box and then change these following properties: 

¶ Name: frmInsNote 

¶ Text: Insert Note 

¶ StartPosition: CenterScreen 

Your form should now look similar to the following after you have made all of the 
property changes. 

 

15. Right-click over the dialog box in the form editor and click View Code. 

16. At the very top of the Code Window, add the following Imports  statements just below 

the Imports System.Windows.Forms statement. These will provide you with access to 
the methods defined in the MyCommands.vb file and parts of the AutoCAD .NET API. 

 Imports  MyLISPFunctions.MyLISPFunctions  
 Imports  Autodesk.AutoCAD  
 Imports  Autodesk.AutoCAD.Runtime  
 Imports  Autodesk.AutoCAD.ApplicationServices. Application  
 Imports  Autodesk.AutoCAD.DatabaseServices  
 Imports  Autodesk.AutoCAD.Geometry  
 Imports  Autodesk.AutoCAD.EditorInput  



 

 

Page 34 

Note: MyLISPFunctions.MyLISPFunctions  represents <Solution 

name>.<Namespace>. If you used a different name for the solution or namespace, make 
sure to adjust as needed. 

  

17. Just below the Public Class  frmInsNote  statement, enter the following code: 

 Private  Const  c_InsPoint As Integer  = 10  
 Private  Const  c_NoteType As Integer  = 2  
 Private  g_InsPoint As Point3d  
 Public  DialogValues As ResultBuffer  
 Private  g_NoteType As String  

18. In the Code Window, Class Name drop-down list, choose btnInsPoint . 

 

19. From the Method Name drop-down list, choose Click . 

 



 

 

Page 35 

20. Click inside the newly added btnInsPoint_Click  method near the bottom of the 

Code Window. Then enter the following code for the btnInsPoint_Click  method: 

 Private Sub btnInsPoint_Click(ByVal sender As Object, _  
                               ByVal e As EventArgs) _ 
                               Handles btnInsPoint.Click  
    Dim docEditor As EditorInput.Editor  
    docEditor = DocumentManager.MdiActiveDocument.Editor  
 
    ' Hide the dialog box to  interact with the drawing window  
    Dim docEditorInt As EditorInput. EditorUserInteraction  
    docEditorInt = docEditor. StartUserInteraction ( Me)  
 
    Try  
        Dim pPointOpts As New PromptPointOptions (vbLf + _  
                                  "Specify insertion point: " )  
 
        Dim pPointResult As PromptPointResult = _ 
                                  docEditor. GetPoint (pPointOpts)  
 
        If pPointResult.Status = PromptStatus .OK Then 
            g_InsPoint = pPointResult.Value  
 
            txtInsPoint.Text = pPointResult.Value. ToString ()  
        End If  
    Catch ex As System. Exception  
        MsgBox(ex.Message, MsgBoxStyle .Critical, "Error" )  
    Finally  
        ' Redisplay the dialog box and end user interaction  
        docEditorInt. End()  
    End Try  
 End Sub 

21. Add the LostFocus  method for the cmbNoteTypes  control like you added the Click  

method for the btnInsPoint  control in Steps 18 and 19. Then add the following code 

for the LostFocus  event: 

 Private Sub cmbNoteTypes_LostFocus(ByVal sender As Object, _  
                                   ByVal e As System.EventArgs) _  
                                   Handles cmbNoteTypes.LostFocus  
     ' Get the string of the current item  
     ' and assign it to the global variable  
     Try  
         g_NoteType = cmbNoteTypes.SelectedItem. ToString ()  
     Catch  
         g_NoteType = ""  
     End Try  
 End Sub 



 

 

Page 36 

The LostFocus  method is triggered when another control in the dialog box is clicked or 

receives focus.  

22. Add the Shown method for the frmInsNote  dialog box like you added the Click  

method for the btnInsPoint  in Steps 18 and 19. Choose (frmInsNote Events) from the 

Class Name drop-down list. Then add the following code for the Shown event: 

 Private Sub frmInsNote_Shown(ByVal sender As Object,  
                              ByVal e As System.EventArgs) _  
                              Handles Me.Shown  
     ' Setup the values for the ComboBox control  
     If cmbNoteTypes.Items.Count = 0 Then 
         cmbNoteTypes.Items. Add( "General Disclaimer" )  
         cmbNoteTypes.Items. Add( "Confidential" )  
         cmbNoteTypes.Items. Add( "Draft" )  
     End If  
 
     ' Process the values passed in  
     If Not DialogValues = Nothing  Then 
         ' Step through each value  
         For Each val As TypedValue In Dial ogValues  
 
             ' Check the type of data passed  
             Select Case CInt (val.TypeCode)  
                 ' Get the value for the insertion point  
                 Case 10 
                     g_InsPoint = val.Value  
                     txtInsPoin t.Text = g_InsPoint. ToString ()  
                 ' Get the value for the note type  
                 Case 2 
                     g_NoteType = val.Value  
                     cmbNoteTypes.Text = g_NoteType  
             End Select  
         Next  
     End If  
 End Sub 

The Shown method is triggered when the dialog box is displayed.  

23. Replace the code inside of the Private Sub OK_Button_Click  method, so it looks 

like the following code: 

 Private Sub OK_Button_Click(ByVal sender As System.Object,  
                             ByVal e As System.EventArgs) _  
                             Handles OK_Button.Click  
     Me.DialogResult = System.Windows.Forms. DialogResult .OK 
     Me. Close ()  
 
     ' Store current values in a list of dotted pairs  



 

 

Page 37 

     DialogValues = New ResultBuffer (  
         New TypedValue ( LispDataType .ListBegin),  
         New TypedValue ( LispDataType .Int16, c_InsPoint),  
         New TypedValue ( LispDataType .Point3d, g_InsPoint),  
         New TypedValue ( LispDataType .DottedPair),  
         New TypedValue ( LispDataType .ListBegin),  
         New TypedValue ( LispDataType .Int16, c_NoteType),  
         New TypedValue ( LispDataType .Text, g_NoteType),  
         New TypedValue ( LispDataType .DottedPair))  
End Sub 

24. In the Solution Explorer, double-click myCommands.vb. 

25. Near the top of the Code Window, below the last Imports  statement, enter the 

following code statements: 

 ' Add reference to the frmInsNote dialog box  
 ' (Form Name value, not file name)  
 Imports  MyLISPFunctions.frmInsNote  

26. Click before the End Class  statement at the bottom of the MyCommands.vb file, and 

then press Enter twice to add a few blank lines. On one of the new blank lines, enter the 
following code to define a custom AutoLISP function to display the dialog box: 

     ' Defines an AutoLISP function that displays the  
     ' dialog box frmInsNote  
     ' Usage: (displayinsnote)  
     '         (displayinsnote (cons 2 "Draft"))  
     <LispFunction( "DisplayInsNote" )> _  
     Public  Function  DisplayInsNote( ByVal  rb As ResultBuffer)  
         Dim dialog As New frmInsNote  
         dialog.DialogValues = rb  
         dialog.ShowDialog()  
 
         If  dialog.DialogResult = _  
                Windows.Forms.DialogResult.OK Then 
             ' Return a list of dotted pairs based  
             ' on the selected responses  
             Return  dialog.DialogValues  
         Else  
             ' Return nil if the dialog box is canceled  
             Return  New TypedValue(LispDataType.Nil)  
         End If  
     End Function  
 End Class  

27. Save and build the DLL and then load it into AutoCAD. 

28. At the Command prompt, enter (displayinsnote). 

  



 

 

Page 38 

29. In the dialog box, click the Pick button and specify a point in the drawing. Then choose a 
value from the drop-down list and click OK. 

You should notice the specified values are returned as a list. You can also use the same 
structure to set the default values of the dialog box. The example is designed to allow a 
partial list of the options to be set as well, so you could set the default value of the 
ComboBox control and not the insertion point. 

Note: Not all of the error handling is in place for this example as it would make the 
example much more complicated and detract from what is being demonstrated. 

30. The DisplayInsNote  function is designed to accept a list like the one it returns. At the 

Command prompt, enter (displayinsnote (cons 2 "Draft")). 

This time the dialog box is populated with the Draft item current in the ComboBox 
control. 

The MyNote.lsp file that is included with the materials for this session demonstrates how to use 
the DisplayInsNote  function in an AutoLISP routine and how to parse the return value. 

 ;; Example of using the DisplayInsNote function  
 (defun c:MyNote ( / valList noteType noteIns noteText)  
   (setq valList (displayinsnote))  
 
   (if valList  
     (progn  
       (setq noteType (cdr (assoc 2 valList))  
             noteIns (cdr ( assoc 10 valList))  
             noteText "")  
 
       (if (= noteIns nil)(setq noteIns (list 0,0,0)))  
       
       (setq noteText (**getNoteText** noteType))  
       (command "._ - text" noteIns 1 0 noteText)  
     )  
   )  
 )  
 (prompt " \ n\ nType MYNOTE to insert  a standard note \ n")  
 
 ;; Gets the actual note text  
 (defun **getNoteText** (noteType / )  
   (cond  
     ((= (strcase noteType) "DRAFT")  
         "DRAWING IS A DRAFT ONLY" 
     )  
     ((= (strcase noteType) "CONFIDENTIAL")  
         "DRAWING IS CONFIDENTIAL" 
     )  
     ((= (strcase noteType) "GENERAL DISCLAIMER")  
         (strcat "THIS TECHNICAL DOCUMENT HAS BEEN " 



 

 

Page 39 

                 "PREPARED TO MEET INDUSTRY STANDARDS AND PRACTICES.") 
     )  
   )  
 )  
 (princ)  

10 Where to Get More Information 

When you are first starting to use a new feature, you will have questions and where you go to 
find answers might not be clear. The following is a list of resources that you can use to get help: 

¶ AutoCAD Online Help System – The AutoCAD .NET Developer’s Guide in the 
AutoCAD online Help system contains a lot of information on using the AutoCAD 
Managed .NET API to create custom programs. 

To access the online help, go to: https://www.autodesk.com/autocad-net-developers-
guide 

¶ ObjectARX SDK – While it is named the ObjectARX SDK, it contains many samples for 
the AutoCAD Managed .NET API. For information on the ObjectARX SDK, see 
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx 

¶ Through the Interface (Blog) – Kean Walmsley (Senior Manager, SW Architect), offers 
a wide range of information on using the various programming APIs that are available for 
use with AutoCAD. Visit Kean’s blog at https://through-the-interface.typepad.com/ 

¶ Autodesk Developerôs Network – If you are serious about developing applications for 
AutoCAD, you should consider becoming a registered Autodesk Developer. For 
information on registering as an Autodesk Developer, see 
https://www.autodesk.com/adn 

¶ Autodesk Discussion Forums – The Autodesk forums provide peer-to-peer networking 
and some interaction with Autodesk moderators. You can ask a question about anything 
in AutoCAD and get a response from a fellow user or Autodesk employee. To access the 
.NET forums, go to https://forums.autodesk.com, click AutoCAD, and then click .NET) 

¶ AUGI Forums – The AUGI forums provide peer-to-peer networking where you can ask 
questions about virtually anything in AutoCAD or Autodesk software related and get a 
response from a fellow user. Visit AUGI at https://www.augi.com 

¶ Internet – There are tutorials and information scattered across the Internet that you can 
read to learn more VB.NET as well as some specific to using the AutoCAD Managed 
.NET API. Use your favorite search engine, such as Google or Bing, to find this 
information. 

¶ Books – There are many books out there on VB.NET, but there are currently no books 
in print any more that cover using the AutoCAD Managed .NET API. The only book that I 
was aware of, which I did not review it, was VB.NET Programming for AutoCAD 
Customization by Jerry Winters. 

  

https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx
https://through-the-interface.typepad.com/
https://www.autodesk.com/adn
https://forums.autodesk.com/
https://www.augi.com/


 

 

Page 40 

Appendix 1: AutoCAD .NET Wizard Not Showing in Visual Studio 

The AutoCAD .NET Wizard isn’t required for you to create a new project, but it can simplify the 
process. 

Here are some things to try if the AutoCAD .NET Wizards fail to install or Visual Studio doesn’t 
recognize them as being installed. 

AutoCAD .NET Wizard Failed to Install the Files 

The AutoCAD 2022 .NET Wizard installs the files by default under the following locations: 

¶ Visual Basic – %USERPROFILE%\Documents\Visual Studio 
2019\Templates\ProjectTemplates\Visual Basic\Autodesk/AutoCAD 2022 VB plug-in.zip 

¶ Visual C# – %USERPROFILE%\Documents\Visual Studio 
2019\Templates\ProjectTemplates\Visual C#\Autodesk/AutoCAD 2022 CSharp plug-
in.zip 

If the Autodesk folders and/or ZIP files are missing, try: 

¶ Making sure Visual Studio 2019 or Visual Studio 2019 Community are installed first. 

¶ Running the installer as an Administrator. 

¶ Restart your workstation and try installing the wizards again. 

If that still fails, craete the Autodesk folder under the previously mentioned locations and then 
download/rename the ZIP files from the following locations: 

¶  Visual Basic – https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%
20plug-in.zip 

¶ Visual C# – https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSh
arp%20plug-in.zip 

AutoCAD .NET Wizard is Installed but Visual Studio Fails to Find the Templates 

The AutoCAD 2022 .NET Wizard files are under the following locations, but Visual Studio still 
doesn’t recognize them: 

¶ Visual Basic – %USERPROFILE%\Documents\Visual Studio 
2019\Templates\ProjectTemplates\Visual Basic\Autodesk/AutoCAD 2022 VB plug-in.zip 

¶ Visual C# – %USERPROFILE%\Documents\Visual Studio 
2019\Templates\ProjectTemplates\Visual C#\Autodesk/AutoCAD 2022 CSharp plug-
in.zip 

Visual Studio looks for Project and Item Templates in specific locations, and these locations can 
be user defined. To see where Visual Studio is looking for the templates in your installation, do 
the following: 

1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019) 

2. In Microsoft Visual Studio, on the Visual Studio 2019 start page, click Continue without 
Code. 

https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip


 

 

Page 41 

3. Click the Tools menu > Options. 

4. In the Options dialog box, in the Search Options text box, enter Template. 

 

5. Under Projects and Solutions, select Locations. 

6. Verify that the locations specified are where the Autodesk folders and AutoCAD .NET 
Wizards are placed, and if not move the ZIP files or change the locations in which Visual 
Studio is looking for templates. 

When All Else Failsé Create the Project from Scratch 

If you can’t still get the AutoCAD .NET Wizards to work in Visual Studio, proceed to Appendix 2: 
Create a New VB.NET Project without the .NET Wizard. 

  



 

 

Page 42 

Appendix 2: Create a New VB.NET Project without the .NET Wizard 

This section explains how to create a new VB.NET project from scratch without the assistance 
of the AutoCAD .NET Wizard as described earlier in the section Create a New VB.NET Project 
with the .NET Wizard. 

1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019) 

2. In Microsoft Visual Studio, click Create a New Project (or click File menu > New Project). 

 

3. In the Create a New Project dialog box, in the Search text box, type Class. 

4. Choose Class Library (.NET Framework) for Visual Basic (VB) and click Next. 

Make sure it is for Visual Basic (VB) and not C#, and not the .NET Standard project type. 

 

5. In the Configure Your New Project dialog box, in the Project Name text box, type 
MyLISPFunctions. 

6. Under Location, click the Ellipsis […] button. 

  



 

 

Page 43 

7. In the Project Location dialog box, browse to the location of the dataset for this session. 
Double click the Dataset folder and click Select Folder. 

The path now might look something like: 

C:\Dataset\SD500025  

8. Click the Framework drop-down list and choose .NET Framework 4.8. 

If you don’t have 4.8 installed, you can choose .NET Framework 4.7 as well. 

 

9. Click Create. 

  



 

 

Page 44 

10. In the Solution Explorer, right-click the References node and click Add Reference. 

 

11. In the Add Reference dialog box, Browse tab, click Browse and browse to the folder in 
which you installed the ObjectARX SDK. 

The ObjectARX 2022 SDK is installed to the following location by default: 

C:\Autodesk\ObjectARX_for_AutoCAD_2022_Win_64bit_dlm 

12. Continue browsing to the Inc folder. Press and hold Ctrl, and select the AcCoreMgd.dll, 
AcDbMgd.dll and AcMdg.dll. Click Add. 

 

13. Click OK to accept the changes and close the Reference Manager. 

14. Right-click over one of the newly added references and choose Properties. 

  



 

 

Page 45 

15. In the Properties window, click the Copy Local field and then select False from the drop-
down list. 

 

Note: Setting Copy Local to False instructs Microsoft Visual Studio to exclude the 
referenced DLL in the build output for the project. If the referenced DLL is copied to the 
build output folder, it can cause unexpected results when you load your assembly file 
into AutoCAD. 

16. Repeat Step 15 for AcCoreMgd, AcDbMgd and AcMdg. 

17. In the Solution Explorer, right-click over the Class1.vb file and choose Rename. 

18. Type myCommands and press Enter. 

19. In the “You are renaming a file?” message box, click Yes to rename the class in the file 
as well. 

20. In the Code Editor window for the myCommands.vb file, replace the all the text in the file 
with the following code statements: 

 Imports  System 
 Imports  Autodesk.AutoCAD.Runtime  
 Imports  Autodesk.AutoCAD.ApplicationServices  
 Impor ts  Autodesk.AutoCAD.DatabaseServices  
 Imports  Autodesk.AutoCAD.Geometry  
 Imports  Autodesk.AutoCAD.EditorInput  
 
 <Assembly: CommandClass( GetType(MyLISPFunctions. MyCommands))>  
 Namespace MyLISPFunctions  
 
     Public  Class  MyCommands 



 

 

Page 46 

 
     End Class  
 End Namespace 

21. In the Solution Explorer, right-click over the project node MYLISPFunctions and choose 
Add > New Item. 

22. In the Add New Item dialog box, Items list, select Resource File. 

23. In the Name text box, select the default name and replace it with myCommands and 
click Add. 

24. Click File menu > Save All. 

25. Now that you have created the project, continue with the exercises in Section 5. 

Appendix 3: Debugging and Building a VB .NET Project for Release 

Instead of building a VB .NET project and then loading it into AutoCAD, you can launch 
AutoCAD from Visual Studio and allow you to debug your project while it is executing with in the 
AutoCAD program. This makes it much easier to identify problems in your code. Then once you 
have finished debugging your programs, you should build a Release version of your project 
instead of a Debug release. 

Debugging a VB .NET Project 
The following steps explain how to start debugging a VB .NET project and launch AutoCAD: 

1. In Microsoft Visual Studio, open the project you want to debug and then click Project 
menu > MyLISPFunctions Properties. 

2. In the Project Properties window, click Debug. 

 

3. In the Configuration drop-down list, choose Debug. 

4. Under the Start Action section, click Start External Program option and then click the 
Browse button. 

  



 

 

Page 47 

5. In the Select File navigation box, browse to and choose the acad.exe file in the AutoCAD 
Installation folder. Click Open. 

By default, the AutoCAD 2022 installation folder is: 

 C:\Program Files\Autodesk\AutoCAD 2022 

6. Once you have specified the AutoCAD executable location, you can start debugging 
your project by clicking Debug menu > Start Debugging. 

If the following error message is displayed, click Build menu > Configuration Manager. 
Then in the Configuration Manager, choose Debug from the Active Solution 
Configuration drop-down list and click Close. 

 

7. After AutoCAD starts, switch back over to Visual Studio and click in the margin to the left 
of the code statement you want execution to pause when running your code in 
AutoCAD. 

 

This inserts what is known as a breakpoint which will interrupt execution. 

8. Switch back to AutoCAD and load the debug version of the DLL for your project into 
AutoCAD with the NETLOAD command. 

  



 

 

Page 48 

9. Execute your custom AutoLISP function or command. When the breakpoint is reached, 
execution is interrupted allowing you to check the values of variables in the current 
scope. 

 

10. Click the following from the Debug menu to step through your program: 

¶ Step Into – Advances debugging into a function. 

¶ Step Over – Moves debugging out of statements you don’t want to debug. 

¶ Step Out – Advances debugging outside of a function. 

11. Click Debug > Continue to resme normal execution until the next breakpoint is reached. 

12. Click Debug > Stop Debugging to end debugging and clos AutoCAD. 

Building a Release Version of a VB .NET Project 
When you are ready to use your custom functions and utilities created with VB .NET, you need 
to build your project for release. The following steps explain how to build a Release version of a 
VB .NET project: 

1. In Microsoft Visual Studio, open the project you want to build and then click Build menu 
> Configuration Manager. 

 



 

 

Page 49 

2. In the Configuration Manager, click the Active Solution Configuration drop-down list and 
choose Release. 

3. Click Close to to save the changes made. 

4. Click Build menu > Build MyLISPFunctions. 

By default, your DLL should be built to: 

C:\Dataset\SD500025\MyLISPFunctions\MyLISPFunctions\bin\Release\ 

Appendix 4: Using the acedGetSym and acedPutSym Methods 

Note: This section demonstrates how to import functions that aren’t part of the AutoCAD 
Managed .NET API. The examples here were required in with AutoCAD 2012 and earlier to get 
and set values in AutoLISP user-defined variables because the GetListSymbol  and 

Set LispSymbol  functions didn’t exist at that time. 

The way you work with AutoLISP variables is through the use of the methods acedGetSym  and 

acedPutSym , which are part of the ObjectARX programming language. These two methods are 

brought into VB.NET by using a programming process called P/Invoke. The definitions of the 
ObjectARX functions look like: 

 ' Get the ObjectARX functions acedGetSym and acedPutSym  
 ' so we can get/set AutoLISP variables  
 <DllImport( " acad.exe " , CharSet:=CharSet.Unicode,  
     CallingConvention:=CallingConvention.Cdecl,  
     EntryPoint:= "acedGetSym")>  
 Shared Function  acedGetSym(ByVal  varName As String ,  
                            <Out()> ByRef varValue As IntPtr) As Integer  
 End Function  
 
 <DllImport( " acad.exe " , CharSet:=CharSe t.Unicode,  
     CallingConvention:=CallingConvention.Cdecl,  
     EntryPoint:= "acedPutSym" )>  
 Shared Function  acedPutSym(ByVal  varName As String ,  
                            ByVal  varValue As IntPtr) As Integer  
 End Function  

 
 ' If you want to use the acedGetSym and acedPutSym functions  
 ' in AutoCAD 2017 and later, the function definitions would look like  
 ' <DllImport( "accore.dll" , CharSet:=CharSet.Unicode,  
 '     CallingConvention:=CallingConvention.Cdecl,  
 '     EntryPoint:= "?acedGetSym@@YAHPEB_WPEAPEAUresbuf@@@Z")>  
 ' Shared Function  acedGetSym(ByVal  varName As String ,  
 '                            <Out()> ByRef varValue As IntPtr) As Integer  
 ' End Function  
 
 ' <DllImport( "accore.dll" , CharSet:= CharSet.Unicode,  
 '     CallingConvention:=CallingConvention.Cdecl,  
 '     EntryPoint:= "?acedPutSym@@YAHPEB_WPEAUresbuf@@@Z")>  



 

 

Page 50 

 ' Shared Function  acedPutSym(ByVal  varName As String ,  
 '                            ByVal  varValue As IntPtr) As Integer  
 ' End Function  

In addition to the above method definitions, you will also need to include a reference to the 
System.Runtime.InteropServices  namespace. Add the following to the top of your code 

module: 

 ' Required for using P/Invoke  
 Imports  Syste m.Runtime.InteropServices  

Once the method definitions are added, along with the namespace import you can then use the 
acedGetSym  and acedPutSym  in your application. The following two examples demonstrate 

how to get and set the value of a variable named Foo. 

 ' Defines an AutoLISP function that gets the value of a variable  
 <LispFunction ( "FetchFoo_Legacy" )>  
 Public  Function  FetchFoo_Legacy ( ByVal  rb As ResultBuffer )  
     Dim intPtrRB As IntPtr = IntPtr.Zero  
     Dim esVal As Integer  = acedGetSym( "foo" , intPtrRB)  
     Dim typeValue As New TypedValue ( LispDataType .Nil)  
 
     If (intPtrRB <> IntPtr .Zero) Then 
         Dim newRb As ResultBuffer = ResultBuffer . Create (intPtrRB, True )  
 
         For Each  val As TypedValue In newRb 
             If val.TypeCode >= 5000 Then 
                 Dim lspDataType As LispDataType = val.TypeCode  
                 typeValue = New TypedValue ( LispDataT ype.Text,  
                                            lspDataType. ToString ())  
             Else  
                 Dim dxfCodeType As DxfCode = val.TypeCode  
                 typeValue = New TypedValue ( LispDataType .Text,  
                                            dxfCodeType. ToString ())  
             End If  
         Next  
     End If  
 
     Return typeValue  
 End Function  
 
 ' Defines an AutoLISP function that sets the value of a variable  
 <LispFunction ( "SetFoo" )> _  
 Public  Function  SetFoo( ByVal  rb As ResultBuffer )  
     Dim typeValue As New TypedValue ( LispDataType .Text, "My Value" )  
     Dim newRb As New ResultBuffer  
     newRb.Add(typeValue)  
 
     Dim esVal As Integer  = acedPutSym( "foo" , newRb.UnmanagedObject) 



 

 

Page 51 

 
     Return typeValue  
 End Function  


