AUTODESK UNIVERSITY

SD500025

Bridging the Gap: Extending AutoLISP with .NET

Lee Ambrosius
Autodesk, Inc.

Learning Objectives

1 Learn how to build and load a .NET project

1 Learn how to create a command or AutoLISP function
1 Learn about requesting user input

1 Learn how to create and display a user form

Description

AutoLISP is a very powerful programming language, but it doesn't offer the same knockout
punch that VB.NET/C# does when combined with the AutoCAD .NET API. This class will
explore the fundamentals of VB.NET and examine how you can use it to enhance existing
AutoLISP routines. During this class, you will learn how to create basic commands for AutoCAD
software, and discover functions that you can use with your existing AutoLISP routines. We will
show examples of how to work with AutoCAD objects, get input from the user, create a basic
form, and pass values between AutoLISP and .NET, plus other general programming concepts.
For this class, you should know some AutoLISP, but it will be a beginner-level class for VB.NET
and the AutoCAD .NET API.

Speaker(s)

Lee Ambrosius is a Principal Learning Experience Designer at Autodesk, Inc., for the
AutoCAD® and AutoCAD LT products on Windows and Mac. He works primarily on the
customization, developer, and CAD administration documentation along with the user
documentation. Lee has presented at Autodesk University for about 15 years on a range of
topics, from general AutoCAD customization to programming with the ObjectARX technology.
He has authored several AutoCAD-related books, with his most recent project being AutoCAD
Platform Customization: User Interface, AutoLISP, VBA, and Beyond. When Lee isn't writing,
you can find him roaming various AutoCAD community forums, posting articles on his or the
AutoCAD blog, or tweeting information regarding the AutoCAD product.

Twitter: @leeambrosius

Email: lee.ambrosius@autodesk.com
Blog: http://hyperpics.blogs.com

Page 1

AUTODESK UNIVERSITY

1 Introduction

AutoCAD is an ever changing platform, not only by what it allows a user to do out of the box but
what it offers under the hood for those that want to extend it. AutoLISP is the oldest
programming option for extending AutoCAD, and really has not changed at its core too much
since it was first implemented. There have been a few significant extensions of AutoLISP since
it was first introduced, and those were:

1 DCL which added the ability to create and display dialog boxes.

9 Visual LISP which added an internal editor (or IDE - Integrated Development
Environment) with AutoCAD 2000. It was offered as a separate download for AutoCAD
R14.

Beyond those two enhancements, it has stayed pretty constant which in the development world
is usually not a good sign. While AutoLISP does not seem to be going anywhere in a hurry, it is
really not growing much in functionality either. There have been a few native functions added
over the past few releases for key features, but not quite to the same level that Visual LISP
extended the functionality of AutoLISP.

This session explains how to leverage VB.NET to extend the functionality of AutoLISP by
creating custom native functions in secure libraries. While using VLA- and VLAX functions are
great, they are also limited in functionality based on if features are exposed in the ActiveX/COM
libraries and not all new features are supported through the ActiveX/COM APIs. .NET allows
you to access features in the AutoCAD Managed .NET libraries, ActiveX/COM and also
functions from ObjectARX if needed.

2 What You Need Before Getting Started

Before you start working with VB.NET and the AutoCAD Managed .NET API, you should obtain
the following:

1 ObjectARX Software Development Kit (SDK) — The ObjectARX SDK contains code
samples, project templates, Managed .NET library files, and the AutoCAD Managed
.NET Reference Guide. - https://www.autodesk.com/objectarx, under the Licensing
section, click Download and follow the onscreen instructions.

1 AutoCAD 2022 .NET Wizard — The AutoCAD 2022 .NET Wizard helps to define the
necessary project settings and libraries references that you will need to work with. -
https://www.autodesk.com/developautocad, click AutoCAD 2022 .Net Wizards.zip and
save the file to your local drive. Extract the files and run AutoCAD 2022 dotNET
Wizards.msi.

1 Development Environment — Visual Studio 2019 is what you will need if you plan on
developing applications for AutoCAD 2021 or AutoCAD 2022. If you are working with an
earlier release of AutoCAD, you will want to obtain an earlier release of Visual Studio.
See the Which Edition of Microsoft Visual Studio to Use
(https://help.autodesk.com/view/OARX/2022/ENU/?gquid=GUID-450FD531-B6F6-4BAE-
9A8C-8230AACA48CB4) topic in the AutoCAD Developer documentation to know which
version of Visual Studio and the .NET Framework you might need to use.

If you do not have Visual Studio available, you can download Visual Studio 2019
Community from https://visualstudio.microsoft.com/vs/community/.

Page 2

https://www.autodesk.com/objectarx
https://www.autodesk.com/developautocad
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://visualstudio.microsoft.com/vs/community/

AUTODESK UNIVERSITY

T Aut oCAD Managed . NET DPeElwvel oNET 6Be Galliadmer ' s Gui
information on how to work with the AutoCAD Managed .NET API, and there many code
samples that show the different aspects of the .NET API.

To access the online help, go to: https://www.autodesk.com/autocad-net-developers-
quide
Important Terms

The following are important terms in VB.NET that will be mentioned during this session that you
might not be aware of:

Assemblies — A compiled application that can be loaded into AutoCAD or as part of a
project to access parts of the AutoCAD .NET or another API. The AutoCAD .NET API is
made up of three primary assemblies, which are:

1 AcDbMgd.dll. Use when working with objects in a drawing file.
1 AcMgd.dll. Use when working with the AutoCAD application.
1 AcCui.dll. Use when working with customization (CUIX) files.

Namespace — A component of a loaded assembly. Namespaces are used to access and
organize classes and methods of an API.

9 Autodesk is the parent namespace in the AutoCAD .NET API, which contains several
other important namespaces. AutoCAD is located under the Autodesk namespace
which contains all the namespaces related to AutoCAD as you might have guessed.

The namespaces located under AutoCAD is where you start seeing the actual
structure of the libraries related to AutoCAD.

{} ApplicationServices =
{} Colors

{} ComponentModel

{} DatabaseServices

{} Editorinput

{} Geometry

{} Graphicsinterface

{} GraphicsSystemn

{} Internal -

{} %

The following are the most frequently used namespaces and the ones used in these
handouts:

0 Runtime. Required to define commands and AutoLISP functions.

o ApplicationServices. Required to work with the application and access open
drawings.

o DatabaseServices. Required to work with objects in a drawing.

Page 3

https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/autocad-net-developers-guide

AUTODESK UNIVERSITY

o Geometry. Required to work with data types and methods related to
coordinates and other math related tasks used to define geometry.
o Editorinput. Required to display messages at the Command prompt and

request input from a user.

Note: You use the Imports keyword to enable the use of a namespace in your project.

Download and Install Visual Studio 2019 Community Edition

I f you don’t have a |icense to Visual
Community for free. Folow these steps to download and install Visual Studio Community:

1. Browse to the Visual Studio Community page on the Microsoft website.

Go to https://visualstudio.microsoft.com/vs/community/.

Click Download Visual Studio.

Studi

After you download the Visual Studio Installer, click Open File or double-click the file in

the Downloads folder.

4. | f you are prompted with “Do you want to
device?” message, click Yes.
In the Visual Studio Installer message box, click Continue.
In the Installing dialog box, under Desktop & Mobile, check .NET Desktop Development.

Workloads Individual components Language packs

© MNeed help choosing what ta install? More info

Web & Cloud (4)
@ ASPNET and web development
Build web applications using ASP.NET Core, ASP.NET,

HTML/JavaScript, and Containers including Docker supp.

Python development
Editing, debugging, interactive development and source

A

Installation locations

A

Azure development
Azure SDKs, tools, and projects for developing cloud apps

and creating resources using NET and .NET Framework

Node js development
Build scalable netwark applications using Nodejs, an

X

Installation details
NET development tools

NET Framework 4 - 4.6 development tools
Blend for Visual Studio

Entity Framework 6 tools

NET profiling tools

IntelliCade

Just-In-Time debugger

Live Share

MLMET Model Builder (Preview)

A E@n

control for Pythan, asynchronous event-driven JavaScript runtime. F# desktop language support
PreEmptive Protection - Dotfuscator
NET Framework 4.6.1 development tools
Closlion o hdolilo (o
| \NET Framework 4.7 development tools |
Bl NET desktop development m Desktop development with C++ NET Framework 4.7.1 development tools
‘—.-.——I Build WEF, Windows Farms, and console applications = Build modermn C++ apps for Windows using tools of your NET Framework 4.8 development tools
using C#, Visual Basic, and F# with NET and NET Frame... choice, including MSVC, Clang, CMake, or MSBuild.

" PTG
Windows Communication Foundation
SQL Server Express 2016 LocalDB

Location

Ci\Program Files (xB6)\Microsoft Visual Studio\2019\Community Change...

Total space required 6.63 GB

* | Install

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual
Studio. This software s licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those
licenses

Install while downloading

In the Installation Details area, check the following additional components:

1 .NET Framework 4.7
1 .NET Framework 4.8

Click Install.

When the installer finishes, sign into your Microsoft Account (or create a new one) or
click Not Now, Maybe Later. to start Visual Studio.

Page 4

o

20109

al |

https://visualstudio.microsoft.com/vs/community/

AUTODESK UNIVERSITY

10. In the Visual Studio, Start with a Familiar Environment dialog box, click Start Visual
Studio.

11. Close Visual Studio and the Visual Studio Installer, and then continue to the next
sections to install the ObjectARX SDK and the AutoCAD 2022 .NET Wizard.

Download and Install the ObjectARX SDK

You will need to install the ObjectARX 2022 SDK to access the AutoCAD .NET libraries, and the
Aut oCAD . NET Dev e énoepgcrides. 3he foltowingRteps explain how to
download and install the ObvjectARX 2022 SDK:

1. Browsetot he Obj ect ARX section of the AutoCAD

Go to https://www.autodesk.com/developer-network/platform-
technologies/autocad/objectarx-license-download.

Scroll down and fillout the information for the License & Download Agreement.
Click *“1 Agree” and then click Downl oad.

. On the AutoCAD Object Downloads page, click the link for your target release of
AutoCAD.

5. Once the file has been downloaded, double-click the EXE file and click OK to accept the
defaults.

By default, the SDK files are installed to:
C:\Autodesk\ObjectARX for_AutoCAD_2022 Win_64bit_dIm
Download and Install the AutoCAD 2022 .NET Wizard

The AutoCAD 2022 .NET Wizard simplifies the process of creating a new VB .NET project. The
exercises in this handout utilize the wizard, so you will want to install it. The following steps
explain how to dopwnload and install the AutoCAD 2022 .NET Wizard:

Deve

1. Browsetot he Aut oCAD Developer’'s Center website.

Go to https://www.autodesk.com/developer-network/platform-technologies/autocad.
Scroll down to the Tools section and click the AutoCAD 2022 DotNet Wizard link.
On the GitHub page, click Download.

The Download can also be found here: https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD 2022 dotnet wi

zards.zip
4. Once the file has been downloaded, extract the contents of the ZIP file.

The contents don't need to be extracted t

5. Open the folder in which you extracted the ZIP file and doble-click the
AutoCADNetWizards.msi file.

6. If the Windows Protected Your PC message box appears, click More Info and then click
Run Anyway.

7. Follow the on-screen prompts and accept all the default values.

Page 5

(0]

a S

https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx-license-download
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/AutoCAD_2022_dotnet_wizards.zip

AUTODESK UNIVERSITY

3 Compatibility

Projects created with .NET and the AutoCAD Managed .NET API are built for specific releases
because of the binary compatibility of the .NET API libraries. So a .NET project created for
AutoCAD 2021 might not work with AutoCAD 2020. However, a project built for AutoCAD 2020
may run in AutoCAD 2021 and AutoCAD 2022.

Keep the following in mind when compatibility might be a concern:

1 Use the .NET Framework supported by the earliest target release of AutoCAD. AutoCAD
will let you know if the .NET application is compatible or not when you attempt to load it.
If it is not compatible, you will see a series of error messages at the command line.

The .NET Framework 4.8 release is recommended for AutoCAD 2021 and AutoCAD
2022. See the Which Edition of Microsoft Visual Studio to Use
(https://help.autodesk.com/view/OARX/2022/ENU/?quid=GUID-450FD531-B6F6-4BAE-
9A8C-8230AAC48CB4) topic in the AutoCAD Developer documentation to know which
.NET Framework release you should use for the target release of AutoCAD.

1 Use the .NET and ActiveX/COM libraries for the earliest target release of AutoCAD that
you want to support. This will help you to avoid the use of new functions that might only
exist in the latest APIs.

1 Typically, when upgrading a project from an earlier release, you should only need to
reference the new .NET library files and rebuild the application.

1 Make sure you reference the correct libraries based on the target OS release. If you are
building applications for AutoCAD 2019 and earlier, you will need to have two different
projects, one for 32-bit and another for 64-bit applications based on the liubraries you
are using.

4 Building a VB.NET Project

Before you can get started with defining your custom functions, you will want to download the
sample files for this session and need to create a new project in Visual Studio 2019 or Visual
Basic 2019 Community Edition based on your preference.

The exercises in this handout require you to download and setup a folder for this session. These
steps explain how to download and extract the con

Download and Setup the Dataset Folder

1. Browse to this session’s page.on the Autodesk

Go to https://www.autodesk.com/autodesk-university/conference/overview and search
on the session ID SD500025.

In the search results, click the entry for this session.

On t he spagesclickDowrdoads and then click Material.
The dataset should start downloading to your local drive.

4. Once the dataset has been downloaded, extract the contents of the ZIP file to a folder
structure similar to the following (just make sure to use the same location throughout):

C:\Datasets\SD500025

Page 6

https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-450FD531-B6F6-4BAE-9A8C-8230AAC48CB4
https://www.autodesk.com/autodesk-university/conference/overview

AUTODESK UNIVERSITY

Create a New VB.NET Project with the .NET Wizard
1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019)
2. In Microsoft Visual Studio, click Create a New Project (or click File menu > New Project).

"'@ Create a new project

Choose a project template with code scaffolding
to get started
3. Inthe Create a New Project dialog box, in the Search text box, type AutoCAD.

If no matching results are found, clear the Search text box and search for AutoCAD 2022
VB plug-i n . | f i try ohesofitheffollofviogu n d

1 Goto Appendix1: AutoCAD .NET Wizard Not Showing in Visual Studio and try
some of the steps there to resolve the problem.

1 Go to Appendix 2: Create a new VB .NET Project without the .NET Wizard and
create a project from scratch. It will take a few more steps, but the .NET Wizard
isn’t required though it simplifies the set

4. Choose AutoCAD 2022 VB plug-in and click Next.

W :
Create ad hew project AutoCAD X - Language = Platform = Projecttype ~
Recent project templates A AutaCAD 2022 CSharg plug-in
- This is a basic AutoCAD Plugin in C#

+M Class Library (NET Framework) Wisual Basic

Bl Class Library (NET Standard) Viesal Basic A i}:\‘:\?:ijjii\t?czl:\?}-‘PTuginim\"B.met

Conscle App

B Console App [NET Core) c# Mot finding what you're locking for?

Install more tools and features
Back Next
5. Inthe Configure Your New Project dialog box, in the Project Name text box, type
MyLISPFunctions.

6. Under Location, click the EIllipsis [..] button.

In the Project Location dialog box, browse to the location of the dataset for this session.
Double click the Dataset folder and click Select Folder.

The location might look something like:
C:\Datasets\SD500025

Page 7

AUTODESK UNIVERSITY

8. Click the Framework drop-down list and choose .NET Framework 4.8.
I f you don’'t have 4.8 installed, you can choos

®

Configure your new project

AutoCAD 2022 VB plug-in

Project name

| MyLISPFunctions ‘

Location

‘ Ci\Datasets\SD500025% -

Solution name (1)

‘ MyLISPFunctions ‘

|:| Place solution and project in the same directory

Framewaork

‘ NET Framework 4.8 =

N

Back Create

9. Click Create.

10. In the AutoCAD .NET Wizard Configurator dialog box, click the first Ellipsis [...] button
and browse the location of the Inc folder in the ObjectARX SDK.

By default, the folder is at:
C:\Autodesk\ObjectARX for_AutoCAD_2022 Win_64bit_dlm\inc

Page 8

AUTODESK UNIVERSITY

11.Clickthesecond EIl | i psi s [..] button
By default, AutoCAD 2022 is installed in the folder:
C:\Program Files\Autodesk\AutoCAD 2022

a5 AutoCAD .NET Wizard Configurator — O *

|C:'-ﬁLrthesk'-.Objec1;’-‘-.H ¥_for_AutoCAD_2022 Win_64bit_diminc

Specify the AutoCAD executable location

|C:'-.F‘n:ugram Files" Autodesk " AutoCAD 2022

Assemblies to reference

AutoCAD

AutoCAD Database [] AcDx

AutaCAD AutoCAD Core
[] AdWindows [AuteCAD Interop
] AcWindows] B-Rep
] 4cTe] AcCui
Select All Clear Al
Ok Cancel About ...

Specify the location of the folder inside the ObjectARX SDK that contains AcMgd.dll

Run As: |ACAD -~

[] AutoCAD Interop Common

acaddexeldile.o ws e

12. Optionally, check AutoCAD Interop Common and AutoCAD Interop if you plan on using

the AutoCAD ActiveX/COM API with your .NET application.
c a rof atcess theVLA-OBJECT data type with your custom AutoLISP

Note: Y o u
functions.

13. Click OK.
14. Click File menu > Save All.

Using the AutoCAD .NET Wizard simplifies the learning curve of setting up a new VB .NET
project, but it also hides a few things that you should know as well when you are first getting
started. Appendix 2: Create a New VB .NET Project without the .NET Wizard later in this

handout explains how to create a VB.NET project from scratch without using the AutoCAD .NET

Wizard.

Page 9

t

(0]

t

AUTODESK UNIVERSITY

5 Create a Command

Commands are the most common way of exposing functionality defined in a VB.NET project to
a user and for use in an AutoLISP program. To define a command, you prefix a Public method

with the CommandMethod attribute. This lets AutoCAD know that the following method should
be defined in AutoCAD as a command when it is loaded.

Any Public method in a VB.NET project can be used to define a command, but it should not
be defined to accept any parameters. Parameters are used to pass values into a method, much
like the variables defined before the backslash of a defun expression in AutoLISP. If your
command requires input, you must prompt the user for the appropriate values at the Command
prompt or use a dialog box.

Add the Code to Create a Command

These steps explain how to define a command with the global name of HELLOAU and a local
name of BONJOURAU. The command printst he t ext “ We |l ¢ dorthe Cdmmand U
window.

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb.

The file will open in an editor window, and if you scroll through the file you will notice
there are several boiler plate templates for commands and functions. This was added as
part of the AutoCAD 2022 VB plug-in template.

I f you dnoy@dmmantsavlyieyour project, see Step 17under the Appendix 2:
Create a new VB .NET Project without the .NET Wizard section of this handout.

2. Scroll to the bottom of the file and click in the line above End Class and then press
Enter.

3. On the new blank line, enter the following code:

<CommandMethdd'MyGroup", "HelloAU" , "BonjourAU" ,
CommandFlagsModal)>
Public Sub HelloAU () ' This method can have any name
Dim docEditor As Editor =
Application .DocumentManager.MdiActiveDocument.Editor
docEditor. WriteMessage ("Welcome to AU 2021!")
End Sub

MyGroup — Group name used to organize related commands. Defined groups can be
seen with the Commands option of the ARX command in AutoCAD.

HelloAU — Global command name.
BonjourAU — Local/regional command name.
CommandFlags.Modal — Command flags used to control the behavior of the command.

4. Click the File menu > Save All to save the changes made to the project.

Page 10

2021

AUTODESK UNIVERSITY

6 Build and Load a .NET Assembly

After you have defined the methods that represent the new commands or functions to be made
available in AutoCAD, you must build (often referred to as compile) your project into a .NET
assembly — or DLL. Once a DLL is been built, you use the NETLOAD command to load it into
AutoCAD.

Note: DLLs loaded into AutoCAD cannot be unloaded from the current session. However, they
are also not persistent between sessions unless they are loaded through the Windows Registry.

For information on loading a .NET DLL using the Windows Registry, see the Develop
Applications with VB.NET and C# > Distribute Your Application topic
(https://help.autodesk.com/view/OARX/2022/ENU/?quid=GUID-70D60274-57E0-4B22-8D0OC-
3C7F212A7CAF)i n t he Aut oCAD . NET Developer’s Guide.

Build and Load a .NET Assembly

You build a DLL from your project using the Build menu within Microsoft Visual Studio. The
following steps explain how to build and load your DLL into AutoCAD, and then start the
HelloAU command.

Note: For information on how to debug and build your project for release, see Appendix 1:
Debugging and Building a VB .NET Project for Release.

1. With your project open in Visual Studio, click Build menu > Build MyLISPFunctions.
The build status and location of your DLL are displayed in the Output window.

100% = @ Mo issues found 1 »
Output

Show output from: Build - =

Build startpor=frojectrrcIisrruncions;—Conmiguratiom—Tetug—amy—Crt

1> MyLISPFunctions fF> C:\Datasets\SD588825\MyLISPFunctions\MyLISPFunctions\bin\Debug\MyLISPFunctions.dll

=

Error List [eliidaii

[] Build succeeded
If the Output window is not displayed, click View menu > Output.

2. If any errors are displayed in the Output window, make the required changes to the code
and try to build the project again.

For example, if you see the following in the Error List, double-click the entry to open the
file in the editor window.

100% - @ Mo issues found

Error List
Entire Solution - Q 1 Error 1 0 Warnings 0 0 of 1 Message "f Build + IntelliSense <
* Code Description Project File

€3 BC20002 Type 'Global. AutoCAD_VE_plug_in.My.MySettings' is not defined. MyLISPFunctions Settings.Designer.vh

Error List

Page 11

https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-3C7F212A7CAF
https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-70D60274-57E0-4B22-8D0C-3C7F212A7CAF

AUTODESK UNIVERSITY

o g >~ w

7.

In the editor window for this particular error, replace the two instances of:
Global . AutoCAD_VB plug_in .My.MySettings

With the following:
Global . MyLISPFunctions .My.MySettings

Note:Thi s might happen if the AutoCAD . NET Wizar

in the template while creating the project.

If you had to fix any errors in Step 2, rebuild the project again following Step 1.
Launch AutoCAD.

In AutoCAD, at the Command prompt, enter netload.

In the Choose .NET Assembly dialog box, browse to the location of the DLL displayed in
the Output window and select it. Click Open.

By default, your DLL should be built to:
C:\ Dataset\SD500025\MyLISPFunctions\MyLISPFunctions\bin\Debug\

Tip: You can also use the Command function with the NETLOAD command if you want
to load the DLL using AutoLISP or a macro. There are no AutoLISP functions specific for
loading a .NET DLL like there is for AutoLISP (LOAD or ObjectARX (ARXLOAIDfiles. An
example of using NETLOAD at the command line is:

(command "netload" "C:/MyUtilities/MyLISPFunctions.dll")

If the Security — Unsigned Executable File dialog box is displayed, click Load Once.

Security - Unsigned Executable File >

| The publisher of this executable file could not be verified and the file is not
* located in a trusted folder. What do you want to do?

Marme: MyLISPFunctions.dll

Publisher: Unknown Publisher

Location: C 50500025\ Dataset\MyLISPFunctions\MyLISPFunctions\bintDebug
lssuer: Mone

Date: 08/08/2021 18:13

Make sure that this executable file comes from a trusted*nd is located in a trusted folder.

Always Load Load Once Do Mot Load

How do | decide what files to load?

Page 12

AUTODESK UNIVERSITY

8. At the Command prompt, enter bonjourau.

ZellIOURAU|

BOMNJOURAL

BGLOAD
JMSELECTMODE

Command: BONJOURAL
Welcome to AU 2821!

9. At the Command prompt, enter helloau.

You may notice the command d i dappear in the AutoComplete list but the message
was output to the Command window as expected. 1 t doesn’t appear in
list because it is our global command name.

10. At the Command prompt, enter _helloau.
This time, you should have noticed that it appeared in the AutoComplete list
11. At the Command prompt, enter (command "bonjourau").

The command runs as expect with the COMMANIDNction, just like a standard AutoCAD
command would such as LINE or CIRCLE.

Page 13

AUTODESK UNIVERSITY

7 Define an AutoLISP Function

Now that the basics are out of the waydefininga s

custom AutoLISP function. Defining an AutoLISP function is similar to creating a custom
command, but instead of the CommandMethod attribute you use the Li spFunction attribute.
The method you create in .NET for your custom AutoLISP function must be declared as Public
and accept a single parameter of the ResultBuffer type only. ResultBuffer is a data type
that is specific to AutoCAD and is similar to a list in AutoLISP.

' This method can have any name

<LispFunction ("MyLispFunction" , "MyLispFunctionLocal")> _

Public Function MyLispFunction (ByVal args As ResultBuffer)
' Put your command code here

' Return a value to the AutoCAD Lisp Interpreter
Return 1
End Function

While it might look like the custom AutoLISP function only allows for a single parameter, that
i sn’ t t ResdiBuffes trdpesents an array of values; so it can be empty or have one
or more values. For example, the following usages of the previous function are all valid:

(MyLispFunction)
(MyLispFunction "One")
(MyLispFunction "One" "Two")
(MyLispFunction '("One" "Twao"))

The values of a ResultBuffer correspond to one of the data types or data structures that
AutoLISP supports. These data types and structures are listed in the
Autodesk.AutoCAD.Runtime.LispDataType enumerator.

Autodesk.futoCAD.Runtime.LispDataType .L

> Angle -
DottedPair

Double

Int16

Int32

ListBegin

ListEnd

Mil

Maone -

o, oy, o, o, o, 0, o, Mo,

Values of a ResultBuffer are defined as the TypedValue data type. When you create a new
or receive a TypedValue , it contains two properties. The first property is known as the Type
Code which is commonly one of the constants in the LispDataType enumerator.

The second property is the actual value you assigned to the TypedValue . When you define a
custom AutoLISP function, it should always return a value of the TypedValue or

ResultBuffer type. Use a TypedValue when you want to return a single value like a string,
integer, or nil or a ResultBuffer when you want to return a list of values.

Page 14

t

me

AUTODESK UNIVERSITY

For example, to return the text "String" from an AutoLISP function you might use:
Return New TypedValue (LispDataType .Text, "String")
To return a list containing an integervalueof 0 and t he stmightuge: “1 NSERT” vy

Dim rbRt As New ResultBuffer

rbRt. Add(New TypedValue (LispDataType .Int16, 0))

rbRt. Add(New TypedValue (LispDataType .Text, "INSERT"))
Return rbRt

To return a list containing a dotted pair of (0 . "INSERT") you might use:

Dim rbRt As New ResultBuffer

rbRt. Add(New TypedValue (LispDataType .Int16, 0))

rbRt. Add(New TypedValue (LispDataType .DottedPair))

rbRt. Add(New TypedValue (LispDataType .Text, "INSERT"))
Return rbRt

To return a list containing two nested lists of ((0 . "INSERT") (0 5 0)) you might use:

Dim rbRt As New ResultBuffer

rbRt. Add(New TypedValue (LispDataType .ListBegin))

rbRt. Add(New TypedValue (LispDataType .ListBegin))

rbRt. Add(New TypedValue (LispDataType .Int16, 0))

rbRt. Add(New TypedValue (LispDataType .DottedPair))

roRt. Add(New TypedValue (LispDataType .Text, "INSERT"))

rbRt. Add(New TypedValue (LispDataType .ListEnd))

rbRt. Add(New TypedValue (LispDataType .Point3d, = New Point3d (0, 5, 0)))
rbRt. Add(New TypedValue (LispDataType .ListEnd))

Return rbRt

Add the Code to Define an AutoLISP Function

These steps explain how to define a custom AutoLISP function named printargs . The
function will accept no arguments, or one or more arguments. When a value is provided in an
argument, its type code and value are printed in the Command window.

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb.

2. Scroll to the bottom of the file and click in front of the End Class line and press Enter
twice.

3. On the new blank line just above End Class , enter the following code:

' Defines an AutoLISP function that prints the
"type code and value for each argument
' Usage: (printargs '((0 . "INSERT") (0 5 0)))
<LispFunction ("PrintArgs")>
Public Function PrintArgs(ByVal rb As ResultBuffer)

' Gets the AutoCAD editor

Dim docEditor As Editor =

Application .DocumentManager.MdiActiveDocument.Editor

Page 15

AUTODESK UNIVERSITY

' Checks to see if any values were passed into the function
If Not rb= Nothing Then
' Step through each value passed
For Each val As TypedValue In rb
"Outputt he type and value
docEditor. WriteMessage (vbLf & "Type:" &
val.TypeCode. ToString ())

If IsNothing (val.Value) = False Then
docEditor.WriteMessage(vbLf & "Value:" &
val.Value. ToString () &
vbLf)
Else
docEditor. WriteMessage (vbLf & "Value: nil" & vbLf)
End If
Next
Else
docEdit or. WriteMessage (vbLf & "No arguments provided" & vbLf)
End If
' Return nil

Return New TypedValue (LispDataType .Nil)
End Function

Click File > Save All to save the changes made to the project.
Build and load the DLL into AutoCAD.

Note: If the DLL is loaded into AutoCAD already, you will need to close and restart
AutoCAD so you can build the DLL.

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter
(printargs).

The text message "No arguments provided" appears in the Command window.

Command: (printargs)
No arguments provided
nil

B2~

7. At the Command prompt, enter (printargs "Hello AU!").
The argument is identified as LispDataType.Text (5005) with a value of "Hello AU!".

Command: (printargs “Hello AU!™)
Type: 5885

Value: Hello AU!

nil

-

8. At the Command prompt, enter (printargs '((0 . "INSERT") (0 5 0))).

Page 16

AUTODESK UNIVERSITY

The arguments are identified as the following:
LispDataType.ListBegin (5016) with a value of -1
0 with a value of "INSERT"
Note: When a dotted pair is provided, the first value in the pair is its type code.
LispDataType.Point3d (5009) with a value of (0,5,0)

LispDataType.ListEnd (5017) with a value of -1

Command: (printargs '(({@ . “"INSERT") (@ 5 @)))
Type: 5816

Value: -1

Type: @

Value: INSERT

Type: 5889

Value: (8,5,8)

Type: 5817

Value: -1

nil

i —

Note: The printargs function always returns nil , which is like many other AutoLISP
functions. The returned nil can be captured with (princ) s o it doesn’t output tc
Command window.

Working with Dotted Pair

Dotted parsarec ommonl y used to represent DXF data of an
case. When defining atypdandetgreater tipan 5000, Tymk cade values s e a
greater than 5000 are reserved for AutoLISP data types. Type codes typically used to represent

DXF data are represented by the DxfCode enumerator constants.

If val.TypeCode >=5000 Then
Dim IspDataType As LispDataType = val.TypeCode
docEditor. WriteMessage (vbLf & "Type:" &
IspDataType. ToString ()

Else
Dim dxfCodeType As DxiCode =val.TypeCode
docEditor. WriteMessage (vbLf & "Type:" &
dxfCodeType. ToString ())
End If

The above code is a modification of the following line in the printarg function.

docEditor. WriteMessage (vbLf & "Type:" &
val.TypeCode. ToString ())

Page 17

AUTODESK UNIVERSITY

Instead of outputting the integer value of the type code assigned to the TypedValue , it uses
the actual enumerators to get the name of the constant value.

Command: (printargs "((@ . "INSERT") (@ 5 @)))
Type: ListBegin

Value: -1

Type: 5tart

Value: INSERT

Type: Point3d

Value: (8,5,8)

Type: ListEnd

Value: -1

nil

o

Other Examples of AutoLISP Functions

The following code example is of a custom AutoLISP function that expects two arguments which
are of the string data types. The function validates it was passed 2 and only arguments and then
assigns each argument to a string variable if possible before displaying the values to the
Command window. The function returns a value of LispDataType.Nil

' Defines an AutoLISP function named Employee
' Usage: (employee "Lee Ambrosius" "12345")
<LispFunction ("Employee")>
Public Function Employee(ByVal rb As ResultBuffer)
' Gets the AutoCAD editor
Dim docEditor As Editor =
Application .DocumentManager.MdiActiveDocument.Editor

' Checks to see if any values were passed into the AutoLISP function
If Not rb= Nothing Then
If rb. AsArray ().Length <=2 Then
Dim name As String = " ,id As String ="
Dim count As Integer =0

' Step through each value passed
For Each val As TypedValue In rb
' Check to see if the value passed was a string
If (val.TypeCode = LispDataType .Text) Then
" If a string, assign it to the correct variable
Select Case count
Case O
name =val.Value. ToString ()
Case 1
id = val.Value. ToString ()
End Select
Else
' Display error message if an argument wasn't string

Page 18

AUTODESK UNIVERSITY

docEditor. WriteMessage (vbLf &

" error: argument not of STR type" &
vbLf)
' Return nil
Return New TypedValue (LispDataType .Nil)
End If

"Increment s the counter byl
count = count + 1
Next

' Output the two string values
docEditor. WriteMessage (vbLf & "Name:" & name &
vbLf& "ID:" &id & vbLf)
Else
' Display error message when more than 2 values are passed in
docEditor. WriteMessage (vbLf &
- error: too many arguments" & vbLf)
End If
Else
' Display error message when no values are passed in
docEditor. WriteMessage (VbLf &
" error: too few arguments" & vbLf)
End If

" Return nil
Return New TypedValue (LispDataType .Nil)
End Function

When the above function is loaded, try the following AutoLISP statements to see how errors are
handled:

(employee "Lee Ambrosius” "12345")
(employee "Lee Ambrosius” 12345)
(employee)

(employee "Lee" "Ambrosius" "12345")

The following example demonstrates how you can return a string from an AutoLISP function.

' Defines an AutoLISP function that returns a string
' Usage: (stringreturn)
<LispFunction ("StringReturn")> _
Public Function StringReturn(ByVal rb As ResultBuffer)
"Returna string value from the function
Return New TypedValue (LispDataType .Text, "My Value")
End Function

Note: The above examples, the completed project in the dataset files for this session also
contains a function named FuncReturn. The function demonstrates how to return many of the
common data types to AutoLISP from VB.NET.

Page 19

AUTODESK UNIVERSITY

Work with AutoLISP User-Defined Variables

Along with working with values passed into an AutoLISP function, you can get and set the
values of an AutoLISP user-defined variable. Accessing AutoLISP user-defined variables allows
you to use global variables across AutoLISP programs and custom functions defined with VB
.NET.

The way you work with AutoLISP user-defined variables is through the use of the following
methods:

GetLispSymbol — Gets the value assigned to an AutoLISP user-defined variable. The
method accepts the name of the variable for which to get its value and returns an Object
that contains the value of the variable. The GetType method of the Object can be used to
determine the type of data that the Object represents.

SetLispSymbol — Assigns a value to an AutoLISP user-defined variable. This method
takes the name of the variable for which you want to assign a value and an Object or
TypedValue type that contains the value to be assigned to the variable.

Note: If you are using AutoCAD 2012 or earlier, to get and set the value of AutoLISP user-

defined variable, you will have to import the acedGetSym and acedPutSym methods from the

acad.exe or accore.dll file. See the Using the acedGetSym and acedPutSym Methods section

l ater in this handout and the completed foroject
examples.

Get and Set User-Defined AutoLISP Variables

These steps explain how to define two custom AutoLISP functions named fetchfoo and
setfoo . Thefunctionsd on’ t r eajguments setfoo y assigns a string to the AutoLISP
user-defined variable foo, while fetchfoo gets the data type of the value assigned to the
AutoLISP user-defined variable foo. Both of the functions return the value assigned to a
TypedValue type.

1. In Visual Studio, in the Solution Explorer, double-click myCommands.vb.

2. Scroll to the bottom of the file and click in front of the End Class line and press Enter
twice.

3. Onthe new blank line just above End Class , enter the following code:

' Defines or updates the FOO variable
' Usage: (setfoo)
<LispFunction ("SetFoo")>
Public Function SetFoo(ByVal rb As ResultBuffer)
' Gets the AutoCAD editor and current document
Dim docEditor As Editor =
Application .DocumentManager.MdiActiveDocument.Editor
Dim doc As Document =
Application .DocumentManager.MdiActiveDocument

Dim typeValue As New TypedValue (LispDataType .Nil)

Page 20

a

AUTODESK UNIVERSITY

If rb= Nothing Then
typeValue = New TypedValue (LispDataType .Text, "Default Value")
docEditor. WriteMessage (vbLf + "String assigned to FOO" + vbLf)
End If

' Assign the value to FOO
doc. SetLispSymbol ("foo" , typeValue)

Return typeValue
End Function

' Returns the data type assigned to the FOO variable
Usage: (fetchfoo)
<LispFunction ("FetchFoo")>
Public Function FetchFoo(ByVal rb As ResuliBuffer)
' Gets the current document
Dim doc As Document =
Application .DocumentManager.MdiActiveDocument

Dim IspVal As Object =doc. GetLispSymbol ("foo")
Dim typeValue As New TypedValue (LispDataType .Nil)

If IsNothing (IspVal) = False Then
typeValue = New TypedValue (LispDataType .Text,
IspVal. GeiType().Name)
End If

Return typeValue
End Function
4. Click File > Save All to save the changes made to the project.
5. Build and load the DLL into AutoCAD.

Note: If the DLL is loaded into AutoCAD already, you will need to close and restart
AutoCAD so you can build the DLL.

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter !foo.

nil should be returned and appear in the Command window sincethev ar i abl e hasn’ t
been defined or initialzed yet.

Command: !foo

nil

Bl

Page 21

AUTODESK UNIVERSITY

10.

11.

At the Command prompt, enter (setfoo).

The message "String assigned to FOO" appears in the Command window along with the
text string of "Default Value" which is the value returned by the function and assigned to
the FOO variable.

Command: (setfoo)
String assigned to FOO
"Default Value"

=1~ |

At the Command prompt, enter !foo.
"Default Value" is returned and appears in the Command window.

Command: !foo
"Default vValue™

B2~ |

At the Command prompt, enter (fetchfoo).

" String is returned and appears in the Command window because the foo variable
is assigned a value of the data type String.

Command: (fetchfoo)
"String"

by

At the Command prompt, enter (setg foo '((0 . "INSERT") (0 5 0))).
A list of a dotted pair and a 3D point is assigned to the foo variable.

At the Command prompt, enter (fetchfoo).

" TypedValuel] is returned and appears in the Command window because the foo
variable is assigned an array of TypedValue types.

Command: (setq foo '((@ . "INSERT") (@ 5 @)))
((@ . "INSERT") (@ 5 @))

Command: (fetchfoo)

"TypedValue[1"

B2~ |

Page 22

AUTODESK UNIVERSITY

8 Request User Input

Requesting user input at the Command prompt is an important part of most custom applications
in AutoCAD. The AutoCAD Managed .NET API gives you access to many of the same input
functions found in AutoLISP, except you have much greater control over their behavior. With the
user input functions in Managed .NET, you can determine if the user finished entering input,
used a keyword, or cancelled the input method.

There are three parts to the input methods in VB .NET; setup, request, and test. First you setup
the prompt and keywords, and any of the available input options you want to use. Then you
request input from the user before finally testing the status of the input provided.

Input methods are part of the Editor class in the AutoCAD Managed .NET API. You can
reference the current editor by using the following code snippet in your VB .NET application.

Dim docEditor As Editor = _
Application .DocumentManager.MdiActiveDocument.Editor

After you get the current editor, you can use the Editor object to determine which input

methods are available. Hi nt | much | i ke AutolLl SP, they start wi
docEditor.get

Getfngle —

GetCommandYersion

GetCorner

GetCurrentView

GetDistance

GetDouble

GetEntity

GetFileMameForCOpen

GetFileMameForSave -

@

e ae8a08a08e8

After you identify the user input method you want to use, you can determine everything you
need to setup the method for use. All of the Get* input methods require the use of a
PromptOptions class. PromptOptions is not an actual class found in the AutoCAD Managed
.NET API, but is a way to reference a grouping of different classes that are related to prompts
and options for the Get* input methods.

For example, you use the GetPoint method to prompt a user for a point. The GetPoint

method requires you to pass it a value of the Pro mptPointOptions type. When you assign a
variable as the PromptPointOptions type, you can specify the prompt string and any
keywords that you might want to use. You can also change these and other behavior properties
after the variable is defined. In AutoLISP, you would use the Initget function to do this as well
as specify a base point in the case of the GetPoint function itself.

Page 23

AUTODESK UNIVERSITY

& AllowArbitrarylnput
& AllowMNone

A AppendKeywordsToMessage

M BazePoint

@ Equals

@ GetHashCode
@ GetType

A 1sReadOnly

A Keywords
M O

Db i~

Dim pPointOpts As PromptPointOpticns

PointOpts.
nr

F

After you define the appropriate properties for the PromptOptions type, you then use the object

with the correct input method.

Dim pPointOpts As New PromptPointOptions(vbLf + _

"Specify insertion point: "

docEditor.GetPoint(pPointOpts)

While the above code snippet is valid, it is not helpful as the input that the user provides is not
stored for you to use. As previously mentioned, each input method requires you to specify a
variable defined as the appropriate PromptOptions type to control the behavior of the input
method. There is also a specific set of classes that are available for capturing the input specified
by the user. These are referred to as the PromptResult classes.

chintResults.L
@ Equals
2 GetHashCode
@ GetType
M Status
A StringResult
& ToString
& Value

© K

e

Dim pPointResults As PromptPointResult = docEditor.GetPoint(pPointOpts)

The PromptResult classes allow you to check the status of a Get* input method as well as to
get the value the user specified. Commonly, you are going to check the Status property

against the following constants:
1 PromptStatus.OK
1 PromptStatus.Cancel

1 PromptStatus.Keyword

- User provided valid input

- User pressed Esc and cancelled the current input

- User entered one of the available keywords

Page 24

AUTODESK UNIVERSITY

Each PromptResult class allows you to get the value entered or when there is a keyword, the
full text string of the keyword value.

Add a Basic Request for User Input to an AutoLISP Function

These steps explain how to define a custom AutoLISP function named pointorkword . The

function prompts the user for a point using the GetPoint method. It also demonstrates how

you can get the point specified, the keyword entered, or check whether the user pressed Esc.
The function returns a value assigned to a TypedValue type.

1. In Visual Studio, double-click myCommands.vb from the Solution Explorer.

2. Scroll to the bottom of the file and click in front of the End Class line and press Enter
twice.

3. Onthe new blank line just above End Class, enter the following code:

' Defines an AutoLISP function that prompts for a point or keyword
Usage: (pointorkword)
<LispFunction ("PointOrKWord")>
Public Function PointOrkKWord (ByVal rb As ResultBuffer)
Dim docEditor As Editor =
Application .DocumentManager.MdiActiveDocument.Editor

Dim typeValue As New TypedValue (LispDataType .Nil)

Dim pPointOpts As New PromptPointOptions (vbLf +
"Specify a point or [Layer/Undo]: " :
"Layer Undo")

Dim pPointResult As PromptPointResult =
docEditor. GetPoint (pPointOpts)

" User specified a point

If pPointResult.Status = PromptStatus .OK Then
typeValue = New TypedValue (LispDataType .Point3d,
pPointResult.Value)

" User entered a keyword
Elself pPointResult.Status = PromptStatus .Keyword Then
typeValue = New TypedValue (LispDataType .Text,
pPointResult.StringResult)
" User cancelled the input

Elself pPointResult.Status = PromptStatus .Cancel Then
MsgBoxX "Input cancelled”)
End If

Return typeValue
End Function

4. Click File > Save All to save the changes made to the project.

Page 25

AUTODESK UNIVERSITY

Build and load the DLL into AutoCAD.

6. When the DLL has been loaded into AutoCAD, at the Command prompt, enter (setq
rtVal (pointorkword)).

The prompt message Specify a point or [Layer Undo]: is displayed in the
Command.

Command: (pointorkword)

Fwspecify a point or [Layer Undo]:

7. At the Command prompt, pick a point in the drawing.
The point specified in the drawing is assigned to the rtVal variable.

8. Atthe Command prompt, enter (setq rtVal (pointorkword)) and then enter L.
The Layer keyword is assigned to the rtVal variable as a string.

9. At the Command prompt, enter the following AutoLISP statements:

(defun c:Testinput ()
(setq ptl (getpoint "Specify a point with AutoLISP: "))
(setq pt2 (pointorkword))
(alert "AutoLISP continued.")

)
10. With the Testinput command defined using AutoLISP, at the Command prompt, enter
testinput.
11. At the Specify a point with AutoLISP prompt, press ESC.

You should notice the Testlnput command was cancelled.
12. At the Command prompt, enter testinput again.

13. At the Specify a point with AutoLISP
time.

prompt, specify a point in the drawing this

14. At the Specify a point or [Layer Undo]: prompt, press ESC.

You should notice the Testl nput amessage bod
with the text Input cancelled was displayed. This message box is from the
pointorkword function.

15. Click OK to dismiss the message box with the text Input cancelled

16. Click OK to dismiss the alert message with the text AutoLISP continued which is
from the AutoLISP defined command TestInput.

As shown with the user input methods in the AutoCAD .NET API, you have greater
control over how your custom programs can continue or end execution.

Page 26

S

n

AUTODESK UNIVERSITY

9 Create and Display a Dialog Box

AutoLISP allows you to create and use DCL to create basic dialog boxes, but in many ways it
ends up being more of an art than actual science in getting the DCL dialog box to display
correctly. VB .NET provides an integrated dialog box editor that can be combined with what you
have learned about creating custom AutoLISP functions already up to this point.

You can pass values to and get values from the dialog box just like you have already seen in
previous examples of custom functions, but you will want to make sure that you are working with
lists in AutoLISP and TypedValue arrays or ResultBuffe rs in VB .NET. If you use lists, you
can pass in any number of values you want to use for the dialog box, and also return many
values back to your existing AutoLISP applications.

While it takes a little bit of effort to learn how to work with dialog boxes in VB .NET, the effort
pays off in the end with a modern dialog box that can take advantage of a wide range of controls
that are not available in DCL.

When you create a dialog box in VB .NET, you can start with one of the available templates
such as About Box, Splash Screen, or Explorer Form or just a basic dialog box. You access the
list of available dialog box related templates by clicking Project menu > Add New Item.

Add Mew Item - MyLISPFunctions ? X
4 Installed Sort by: | Default ML= Search (Ctrl+E)
4 C It .
Dr'gmdon s Windows Form Common ltems Type: Common ltems
ode A blank Windows Forms (WinForms) Form
Data
L] User Control Common ltems
General I'Ij
WPF
About Box Common ltems
SCOL Server
Web =
b [| Custom Ceontrol Commeon ltems
'

b Online i Dialog Common ltems
Explorer Form Common ltems
Login Form Common ltems

MDI Parent Form Common ltems

Splash Screen Common ltems

Inherited Form Common ltems

i Inherited User Control Common ltems

Marme: Forml.vb

Add Cancel

Page 27

AUTODESK UNIVERSITY

The Dialog template is going to be the one that you will find yourself using commonly. After you
add a dialog box to your project, you use the Toolbox to add controls to your dialog box and the
Properties window to edit the properties of the dialog box or a selected control. The Properties
window functions much like the Properties palette in AutoCAD.

X Properties * A X

Search Toolbox P - InsMote System.Windows.Forms.Form =
[All Windows Forms - b= T R 4
F Commur? Controls Accessibility "

k Pointer

E Appearance

Button BackColor |:| Control

CheckBox Backgroundimage [] (none)

B= CheckedListBox Backgroundimagelayout Tile

E ComboBox Cursor Default

™ DateTimePicker Font Microsoft Sans Serif, 8.25pt

A Label ForeColor - ControlText

A LinkLabel FarmBorderStyle FixedDialog

EZ ListBox RightToLeft Mo

wn o RightTolLeftLayout Falze

aa- ListView

- Text InsMNote

b T B UseWaitCursor False

Ed MeonthCalendar B Behavior

b Netifylcon AllowDrop False

(B MurericUpDown AutcValidate EnablePreventFocusChange

] PictureBox ContexthMenuStrip (none)

=1 ProgressBar DoubleBuffered False

® RadicButton Enabled True

2= RichTextBox ImeMode MeControl

TextBox Data

- E Design

_'fl Iy Mamel InsMnte e

1= TreeView WindowState

E1 WebBrowser Determines the initial visual state of the form.
[Containers =

Page 28

AUTODESK UNIVERSITY

Create a Form in VB.NET

The following steps explain how to create a basic dialog box using the Dialog template. This
dialog box will allow the user to choose from several standard notes to insert into the drawing.
You will add several labels, a text box, a command button, and a drop-down list. By default, the
Dialog template provides you with the standard OK and Cancel buttons.

1. In Visual Studio, with the MYLISPFunctions open, click Project > Add New Item (or right-
click the MYLISPFunctions node in the Solution Explorer and choose Add > New Item).

o File Ed'-—l'-b Project | Build Debug Test A

21 Add Window... o
ml Add Page...
f—l Add User Control...
(X1 Add Resource Dictionary...

FRWOra
ma Add Module...
% Add Class.. "?;*F'*‘-'”'"

Editor
Y Add Mew Data Source... cument!
0 Add Mew ltem... Crl+Shift+A
+, ALl T " 1 % O A F NE"" T'Jll

L = L h
New P

Exclude From Project
[E) Show All Files

2. Inthe Add New Item dialog box, Installed Components, expand Common ltems and
choose Windows Forms.

3. Inthe Items list, select Dialog.

Add Mew ltem - MyLISPFunctions
4 |nstalled

4 Common ltems
Code
Data
General
WPF
S0L Server

[fef
Windows Forms

b Online

Sort by: S

Windows Form
L] User Control
;j ser Lontro

About Box

-
!j Custom Control

Commeon ltems

Common lterns

Common ltermns

Common ltems

Search (Ctrl+E)

Type: Common ltemns

A dialeg for Windows Forms (WinForms)
applications

Dialog

Common ltems

Explorer Form

Common ltems

Name: InsMNote

Add Cancel

Page 29

AUTODESK UNIVERSITY

4.

5.

6.

In the Name text box, select the default text and enter InsNote. Click Add.

b File Edit View Project Buld Debug Formst Test Analyze Tools |

< B2 W = ' = | Debug =~ AnyCPU « b Start -

InsMotewb [Design] + X [eInaars Object Browser

InsNote @

%0q|oo] 1210|dx3 J3AIag

The new dialog box is displayed in the Form editor.

Click View menu > Toolbox to display the Toolbox window.

M Fq View | Project Build Debug Format
14

Code F7 An

-

[é Designer Shift+F7
c Open

[& Error List LI+, E
[2 Output Ctrl+Alt+0

Tacl-|ict Chelat T

Toolbox % Ctrl+Alt+ X

s L0 v

Find Reculte 3
By default, the Toolbox is displayed along the left side of the application window.
Click the Toolbox label to expand it.

ﬂ File Edit View Project Build ﬂ File Edit View Project Build Debug 1
N - i - T - Q. Q- B0 G - - | Debug

InsMotewb [Design] & X [uieTulnELLE

Toolbox - 5 X

; Search Toolbox F= 2 B
InsMote [All Windows Forms

4 Common Controls
&k Pointer

SR — Pt
[Fomer o

7] eckBox

o= g T R | Y,

If you click the Pushpin that is displayed in the titlebar of the Toolbox when expanded,
the Toolbox will remain expanded until you click the Pushpin again.

Page 30

AUTODESK UNIVERSITY

7. Inthe Toolbox, clickt h e nem to All Windows Forms if it is currently expanded.

8. Click » next to Common Controls if it is currently collapsed.

Toolbox -l Cb
Search Toolbox LO-R...

- All Windows Farms
4 Common Controls
&k Pointer

g
m
<
m
=
&'
=
=]
=
m
=
3!

9. Double-click the Label control twice.

Two new Labels are added to the dialog.
10. Then double-click the TextBox, ComboBox, and Button controls once each.

Your form should look similar to the following image.

nsMote | 3 |

ok cone

11. Click the Pointer tool, and then arrange and resize the controls and dialog box so it looks
similar to the following image.

i =

InsMote IEI

Label1 | || Button

Label2 | ~| b

Cancs

Page 31

AUTODESK UNIVERSITY

When the Pointer tool is active, you can manipulate a control in one of the following
ways:

9 Click a control or the dialog box to display its resizing handles (or grips). Click and
drag the handle to resize the control in the direction you drag.

9 Click and drag a control to move it on the dialog box.

Note: It is best to position the controls and then resize the dialog box, the OK and
Cancel buttons will reposition themselves when resizing the dialog box.

12. Select Labell on your dialog box and use the Properties window to change the control’s
properties.

Note:l f t he properties window isn’'t open,

Change the following properties for the Labell control:

1 Name: IblinsPoint solution Explorer
M Text: Insertion Point: Properties > 1 x
IblinsPoint System.Windows.Forms.Label -
o= |15
ImagelList (none) -
Text Insertion Point:
il TGpLET
UseMnemenic True
UseWaitCursor False
Behavior
B Data

(ApplicationSettings)
(DataBindings)
Tag

| (MName) IblinsPoint
e

-

Tip: If you struggle with finding a property using the Categorized display of the
Properties window, click Alphabetical to sort the properties by name.

SUIULIUTT e

Properties
InsMotel§rstem. Windows. Forms.Form -
= EJ%'B F |\ X

BackColor |:| Control -

Back Alphabetical [] (none)

Backgroundlmagelayout Tile

Page 32

AUTODESK UNIVERSITY

13. Change the properties for the other controls to the following:

Label2 Buttonl
1 Name: IbINoteType 1 Name: btninsPoint
1 Text: Note Type: 1 Text: Pick
ComboBox1 TextBox1
T Name: cmbNoteTypes 1 Name: txtinsPoint
 Text: T Text:
1 DropDownStyle: DropDownlList 1 Enabled: False

When the dialog box is displayed, the user will be able to interact with all controls except
the labels and TextBox1 which was disabled after changing the Enabled property to
False. By default, labelsu s u a | | gllondar usér interaction as they are commonly
used to provide information to the user.

14. Click on the dialog box and then change these following properties:
1 Name: frminsNote

I Text: Insert Note
9 StartPosition: CenterScreen

Your form should now look similar to the following after you have made all of the
property changes.

Inzert Mote @
Insertion Point: | | Pick
Mote Type: e
Concs
TF u]

15. Right-click over the dialog box in the form editor and click View Code.

16. At the very top of the Code Window, add the following Imports statements just below
the Imports System.Windows.Forms statement. These will provide you with access to
the methods defined in the MyCommands.vb file and parts of the AutoCAD .NET API.

Imports MyLISPFunctions.MyLISPFunctions

Imports Autodesk.AutoCAD

Imports Autodesk.AutoCAD.Runtime

Imports Autodesk.AutoCAD.ApplicationServices. Application
Imports Autodesk.AutoCAD.DatabaseServices

Imports Autodesk.AutoCAD.Geometry

Imports Autodesk.AutoCAD.Editorinput

Page 33

AUTODESK UNIVERSITY

Note: MyLISPFunctions.MyLISPFunctions represents <Solution
name>.<Namespace>. If you used a different name for the solution or namespace, make
sure to adjust as needed.

o Fie

— (m]

Edit Build Search Visual Studio (Ctrl+Q) 2

=|m _

Test Tools Extensions Window

- b Stat e | G _f b R

View Project

(8- @]9 -

Debug Analyze Help MyLISPFunctions

| Debug + AnyCPU

|£2 Live Share

InsNotevb™
[MyLISPFunctions
1 B (C) Copyright 2011 by

Inshote:vb [Design]” myCommandsvb 5 X

-| #3 MyCommands

Object Browser -

-|@ PointOrkWard

Solution Explorer

Qe o-s 6o o s=-

Search Solution Explorer (Ctrl+;)

2

3 Himports System 21 Solution MyLISPFunctions' (1 project) -
4 Imports Autodesk.AutoCAD.Runtime 4 [MyLISPFunctions

5 Imports Autodesk.AutoCAD.ApplicationServices b MyProject

6 Imperts Autodesk.AutoCAD.DatabaseServices b wm References

7 Imports Autodesk.AutoCAD.Geometry b -

8 Imports Autodesk.AutoCAD.EditorInput B Flar

9

10 * Required for using P/Invoke iy b E InsNetewb

1 Imports System.Runtime.InteropServices b vB myCommandsvb -
12 Solution Explorer IO

13 * This line is not mandatery, but improves loading performances

14 <Assembly: CommandClass(GetType(MyLISPFunctions.MyCommands))> Properties

15 ENamespace MyLISPFunctions

16 I

17. Just below the Public Class frminsNote statement, enter the following code:
Private Const c_InsPoint As Integer =10
Private Const c_NoteType As Integer =2
Private g_InsPoint As Point3d
Public DialogValues As ResultBuffer
Private g_NoteType As String

18. In the Code Window, Class Name drop-down list, choose btninsPoint

Edit View Project Build Debug Test Analyze Tools Extensions Window

= | Debug ~ AnyCPU = P Start ~
| |

Object Browser

[] MyLISPFunctions = 3 frmInsNote ~|E
1 ElImports System.Windows.Forms #2 frminsNote
2 Imports MyLISPFunctions.MyLT
3 Imports Autodesk.AutoCAD - ffrmlnsNFuteEventsﬁ
4 Imports Autodesk.AutoCAD.Ru @, btninsPoint h
5 Imports Autodesk.AutoCAD.Ap fa LBt
¢ | Toports AutodeskAutoCD.0at &, crpoeTypes I

19. From the Method Name drop-down list, choose Click

m File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q) 2]
i@-o @ e M| - - Debug ~ AnyCPU - b Start - | gl i | | -

(LRGN |nshote.vb [Design]™ myCommands.vb Object Browser
[vB] MyLISPFunctions vI @, btnlnsPoint =% BackgroundimageChanged -
1 ElImports System.Windows.Forms # BackgroundimageChanged o P
2 Imports MyLISPFunctions.MyLISPFunctions &
3 Imports Autodesk.AutoCAD ¥ B.ack.groundlmageLayoutChanged
4 Imports Autodesk.AutoCAD.Runtime # BindingContextChanged
5 Imports Autodesk.AutoCAD.ApplicationServices. % CausesValidationChanged
6 Imports Autodesk.AutoCAD.DatabaseServices £ b :
annelllCies
7 Imports Autodesk.AutoCAD.Geometry - =
8 Imports Autodesk.AutoCAD.EditorInput # Click L\\)
g9 PR
10 FIPublic Class frmInsNote # ContextMenuChanged

Page 34

AUTODESK UNIVERSITY

20. Click inside the newly added btninsPoint_Click method near the bottom of the
Code Window. Then enter the following code for the btninsPoint_Click method:

Private Sub btninsPoint_Click(ByVal sender As Object, _
ByVal e As EventArgs)
Handles btninsPoint.Click
Dim docEditor As EditorInput.Editor
docEditor = DocumentManager.MdiActiveDocument.Editor

' Hide the dialog box to interact with the drawing window
Dim docEditorint ~ As Editorlnput. EditorUserInteraction
docEditorint = docEditor. StartUserInteraction (M@

Try
Dim pPointOpts As New PromptPointOptions (vbLf + _
"Specify insertion point: ")

Dim pPointResult As PromptPointResult = _
docEditor. GetPoint (pPointOpts)

If pPointResult.Status = PromptStatus .OK Then
g_InsPoint = pPointResult.VValue
txtinsPoint.Text = pPointResult.Value. ToString ()
End If
Catch ex As System. Exception
MsgBoXex.Message, MsgBoxStyle .Critical, "Error")

Finally
' Redisplay the dialog box and end user interaction
docEditorint. End()
End Try
End Sub

21. Add the LostFocus method for the cmbNoteTypes control like you added the Click
method for the btninsPoint control in Steps 18 and 19. Then add the following code
for the LostFocus event:

Private Sub cmbNoteTypes_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) _
Handles cmbNoteTypes.LostFocus
' Get the string of the current item
" and assign it to the global variable
Try
g_NoteType = cmbNoteTypes.Selecteditem. ToString ()
Catch
g_NoteType =
End Try
End Sub

Page 35

AUTODESK UNIVERSITY

The LostFocus method is triggered when another control in the dialog box is clicked or
receives focus.

22. Add the Shown method for the frminsNote dialog box like you added the Click
method for the btninsPoint in Steps 18 and 19. Choose (frminsNote Events) from the
Class Name drop-down list. Then add the following code for the Shown event:

Private Sub frmIinsNote_Shown(ByVal sender As Object,
ByVal e As System.EventArgs) _
Handles Me.Shown
' Setup the values for the ComboBox control
If cmbNoteTypes.ltems.Count =0 Then
cmbNoteTypes.ltems. Add("General Disclaimer")
cmbNoteTypes.ltems. Add("Confidential")

cmbNoteTypes.ltems. Add("Draft")
End If

' Process the values passed in
If Not DialogValues = Nothing Then
' Step through each value
For Each val As TypedValue In Dial ogValues

' Check the type of data passed
Select Case Cint (val.TypeCode)
' Get the value for the insertion point
Case 10
g_InsPoint = val.Value
txtinsPoin t.Text = g_InsPoint. ToString ()
' Get the value for the note type
Case 2
g_NoteType = val.Value
cmbNoteTypes.Text = g_NoteType
End Select
Next
End If
End Sub

The Shown method is triggered when the dialog box is displayed.

23. Replace the code inside of the Private Sub OK_Button_Click method, so it looks
like the following code:

Private Sub OK_Button_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) _
Handles OK_Button.Click

MeDialogResult = System.Windows.Forms. DialogResult .OK
Me Close ()

' Store current values in a list of dotted pairs

Page 36

AUTODESK UNIVERSITY

DialogValues = New ResuliBuffer (

New TypedValue (LispDataType .ListBegin),
New TypedValue (LispDataType .Intl6, c_InsPoint),
New TypedValue (LispDataType .Point3d, g_InsPoint),
New TypedValue (LispDataType .DottedPair),
New TypedValue (LispDataType .ListBegin),
New TypedValue (LispDataType .Intl6, c_NoteType),
New TypedValue (LispDataType .Text, g_NoteType),
New TypedValue (LispDataType .DottedPair))

End Sub

24. In the Solution Explorer, double-click myCommands.vb.

25. Near the top of the Code Window, below the last Imports statement, enter the
following code statements:

' Add reference to the frminsNote dialog box
' (Form Name value, not file name)
Imports MyLISPFunctions.frminsNote

26. Click before the End Class statement at the bottom of the MyCommands.vb file, and
then press Enter twice to add a few blank lines. On one of the new blank lines, enter the
following code to define a custom AutoLISP function to display the dialog box:

' Defines an AutoLISP function that displays the

' dialog box frmInsNote

' Usage: (displayinsnote)

' (displayinsnote (cons 2 "Draft"))

<LispFunction("DisplaylnsNote")> _

Public Function DisplaylnsNote(ByVal rb As ResultBuffer)
Dim dialog As New frminsNote
dialog.DialogValues = rb
dialog.ShowDialog()

If dialog.DialogResult =
Windows.Forms.DialogResult.OK Then

" Return a list of dotted pairs based
' on the selected responses
Return dialog.DialogValues

Else
" Return nil if the dialog box is canceled
Return New TypedValue(LispDataType.Nil)

End If

End Function
End Class

27. Save and build the DLL and then load it into AutoCAD.
28. At the Command prompt, enter (displayinsnote).

Page 37

AUTODESK UNIVERSITY

29.

30.

In the dialog box, click the Pick button and specify a point in the drawing. Then choose a
value from the drop-down list and click OK.

You should notice the specified values are returned as a list. You can also use the same
structure to set the default values of the dialog box. The example is designed to allow a
partial list of the options to be set as well, so you could set the default value of the
ComboBox control and not the insertion point.

Note: Not all of the error handling is in place for this example as it would make the
example much more complicated and detract from what is being demonstrated.

The DisplaylnsNote function is designed to accept a list like the one it returns. At the
Command prompt, enter (displayinsnote (cons 2 "Draft")).

This time the dialog box is populated with the Draft item current in the ComboBox
control.

The MyNote.Isp file that is included with the materials for this session demonstrates how to use
the DisplaylnsNote function in an AutoLISP routine and how to parse the return value.

;; Example of using the DisplaylnsNote function
(defun c:MyNote (/ valList noteType notelns noteText)

)

(setq valList (displayinsnote))

(if valList
(progn
(setq noteType (cdr (assoc 2 vallList))
notelns (cdr (assoc 10 valList))
noteText ")

(if (= notelns nil)(setg notelns (list 0,0,0)))

(setq noteText (**getNoteText** noteType))
(command "._ -text" notelns 1 0 noteText)

)
)

(prompt " \n\ nType MYNOTE to insert a standard note \n")

;- Gets the actual note text
(defun **getNoteText** (noteType /)

(cond
((= (strcase noteType) "DRAFT")
"DRAWING IS A DRAFT ONLY"
)

((= (strcase noteType) "CONFIDENTIAL")
"DRAWING IS CONFIDENTIAL"
)

((= (strcase noteType) "GENERAL DISCLAIMER")
(strcat "THIS TECHNICAL DOCUMENT HAS BEEN "

Page 38

AUTODESK UNIVERSITY

"PREPARED TO MEET INDUSTRY STANDARDS AND PRACTICES.")
)
)
)
(princ)

10 Where to Get More Information

When you are first starting to use a new feature, you will have questions and where you go to
find answers might not be clear. The following is a list of resources that you can use to get help:

1 AutoCAD Online Help System—-The Aut oCAD . NET Developer’'s Gu
AutoCAD online Help system contains a lot of information on using the AutoCAD
Managed .NET API to create custom programs.

To access the online help, go to: https://www.autodesk.com/autocad-net-developers-
quide

1 ObjectARX SDK — While it is named the ObjectARX SDK, it contains many samples for
the AutoCAD Managed .NET API. For information on the ObjectARX SDK, see
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx

1 Through the Interface (Blog) — Kean Walmsley (Senior Manager, SW Architect), offers
a wide range of information on using the various programming APIs that are available for
use with Aut oCAD. hips:kthroaughdhe-iataerface.tygepad.cpm/a t

T Aut odesk Devel opléyowase sdieus abaut developing applications for
AutoCAD, you should consider becoming a registered Autodesk Developer. For
information on registering as an Autodesk Developer, see
https://www.autodesk.com/adn

1 Autodesk Discussion Forums — The Autodesk forums provide peer-to-peer networking
and some interaction with Autodesk moderators. You can ask a question about anything
in AutoCAD and get a response from a fellow user or Autodesk employee. To access the
.NET forums, go to https://forums.autodesk.com, click AutoCAD, and then click .NET)

1 AUGI Forums — The AUGI forums provide peer-to-peer networking where you can ask
guestions about virtually anything in AutoCAD or Autodesk software related and get a
response from a fellow user. Visit AUGI at https://www.augi.com

1 Internet — There are tutorials and information scattered across the Internet that you can
read to learn more VB.NET as well as some specific to using the AutoCAD Managed
.NET API. Use your favorite search engine, such as Google or Bing, to find this
information.

1 Books — There are many books out there on VB.NET, but there are currently no books
in print any more that cover using the AutoCAD Managed .NET API. The only book that |
was aware of, which | did not review it, was VB.NET Programming for AutoCAD
Customization by Jerry Winters.

Page 39

https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/autocad-net-developers-guide
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx
https://through-the-interface.typepad.com/
https://www.autodesk.com/adn
https://forums.autodesk.com/
https://www.augi.com/

AUTODESK UNIVERSITY

Appendix 1: AutoCAD .NET Wizard Not Showing in Visual Studio

The Aut oCAD . NET Wi z ar dcrdate ariew prajeet,chut it caresimplifydhe you t o
process.

Here are some things to try if the AutoCAD . NET W
recognize them as being installed.

AutoCAD .NET Wizard Failed to Install the Files
The AutoCAD 2022 .NET Wizard installs the files by default under the following locations:
1 Visual Basic — %USERPROFILE%\Documents\Visual Studio

2019\Templates\ProjectTemplates\Visual Basic\Autodesk/AutoCAD 2022 VB plug-in.zip

M Visual C# — %USERPROFILE%\Documents\Visual Studio
2019\Templates\ProjectTemplates\Visual C#\Autodesk/AutoCAD 2022 CSharp plug-
in.zip

If the Autodesk folders and/or ZIP files are missing, try:

1 Making sure Visual Studio 2019 or Visual Studio 2019 Community are installed first.
1 Running the installer as an Administrator.
1 Restart your workstation and try installing the wizards again.

If that still fails, craete the Autodesk folder under the previously mentioned locations and then
download/rename the ZIP files from the following locations:

I Visual Basic — https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/ AutoCAD%20VB%
20plug-in.zip

9 Visual C# — https://github.com/ADN-DevTech/AutoCAD-Net-
Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSh
arp%20plug-in.zip

AutoCAD .NET Wizard is Installed but Visual Studio Fails to Find the Templates

The AutoCAD 2022 .NET Wizard files are under the following locations, but Visual Studio still
doesn’t recognize them:

9 Visual Basic — %USERPROFILE%\Documents\Visual Studio
2019\Templates\ProjectTemplates\Visual Basic\Autodesk/AutoCAD 2022 VB plug-in.zip

1 Visual C# - %USERPROFILE%\Documents\Visual Studio
2019\Templates\ProjectTemplates\Visual C#\Autodesk/AutoCAD 2022 CSharp plug-
in.zip

Visual Studio looks for Project and Item Templates in specific locations, and these locations can
be user defined. To see where Visual Studio is looking for the templates in your installation, do
the following:

1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019)

2. In Microsoft Visual Studio, on the Visual Studio 2019 start page, click Continue without
Code.

Page 40

https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20VB%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip
https://github.com/ADN-DevTech/AutoCAD-Net-Wizards/blob/ForAutoCAD2022/AutoCADNetWizardsInstaller/Output/AutoCAD%20CSharp%20plug-in.zip

AUTODESK UNIVERSITY

3. Click the Tools menu > Options.
4. In the Options dialog box, in the Search Options text box, enter Template.

Options

x|

4 Proje

cts and Selutions

Locations
4 Text Editor
4 CfC++

Advanced

4 Text Templating
Text Templating

Projects location:

| ChlUsers\ambroshsourcelrepos

User project templates location:

| ChUsers\ambroshDocumentsiVisual Studio 201Q\Templatei\Pr-:jectTempIate|

User item templates location:

| ChlUsersiambroshDocuments\Visual Studio 2019\ TemplatesiltemTemplates |

Under Projects and Solutions, select Locations.

Verify that the locations specified are where the Autodesk folders and AutoCAD .NET
Wizards are placed, and if not move the ZIP files or change the locations in which Visual

Studio is looking for templates.

When A
I f you

|1 El

can

t

s e
st

Fail sé Create the Pr o]

I get the

Create a New VB.NET Project without the .NET Wizard.

Aut oCAD

ect

Page 41

from

N Eppent%i2z ar d s

t

AUTODESK UNIVERSITY

Appendix 2: Create a New VB.NET Project without the .NET Wizard

This section explains how to create a new VB.NET project from scratch without the assistance
of the AutoCAD .NET Wizard as described earlier in the section Create a New VB.NET Project
with the .NET Wizard.

1. Start Microsoft Visual Studio 2019. (Click Start menu > Visual Studio 2019)
2. In Microsoft Visual Studio, click Create a New Project (or click File menu > New Project).

"'@ Create a new project

Choose a project template with code scaffolding
to get started
3. Inthe Create a New Project dialog box, in the Search text box, type Class.
Choose Class Library (.NET Framework) for Visual Basic (VB) and click Next.
Make sure it is for Visual Basic (VB) and not C#, and not the .NET Standard project type.

X
C reate a n eW p rOJ ect \ Class X - Language ~ Platform ~ Projecttype ™
Recent prOJECt templates r]ic“ Class Library {NET Standard)
- ! A project for creating a class library that targets \NET Standard.
+M Class Library [.NET Standard) Visual Basic
c# Android i0S Linux mac0s Windows Lizrary
Console Apy C++
F DH‘E Class Library (Universal Windows)
B Console App (MET Core) o= A project for creating a managed class library (.dll) for Universal Windows Platform

(UWP) apps.

c# Windows Liorary uwe
ﬂﬁc!" Class Library {NET Framework)
A project for creating a C# class library (dll}
c# Windows Lirary
r]ic!“ Class Library (MET Core)
A project for creating a class library that targets .NET Core,
c# ‘Windows Linux macOs Library
ui'!n Class Library (NET Standard)
& A project for creating a class library that targets .NET Standard.

Wisual Basic Android i05 Linux mac0S Windows Library

VB (|3 ibr: E work)
ui Class Library (NET Framework)
=\

A project for creating a VB class library (.dIl}

Visual Basic Windows Liorary

5. Inthe Configure Your New Project dialog box, in the Project Name text box, type
MyLISPFunctions.

6. Under Location, click the EIlIlipsis [..] button.

Page 42

AUTODESK UNIVERSITY

7. Inthe Project Location dialog box, browse to the location of the dataset for this session.
Double click the Dataset folder and click Select Folder.

The path now might look something like:

C:\Dataset\SD500025
8. Click the Framework drop-down list and choose .NET Framework 4.8.
I f you don’'t have 4.8 installed, you can choos

X

Configure your new project

Class Library (NET Framework) — Visua gasic Windows Lorary

Project name

‘ MyLISPFunctions ‘

Location

‘ CASD500025\Dataset -

Solution name (7}

| MyLISPFunctions |

D Place sclution and project in the same directory

Framework

NET Framework 4.8 =

9. Click Create.

Page 43

AUTODESK UNIVERSITY

10. In the Solution Explorer, right-click the References node and click Add Reference.

® - o x

|&r Live Share &7

Solution Explorer > I x
2 Qb o-5¢aB| L=
=+

Search Solution Explorer (Ctrl+;) L~

] Solution 'MyLISPFunctions' (1 project)
Pl MyLISPFunctions
M My Project

= - | ﬂﬁs
Add Reference... |>,

T AU JEvice —

t{;b Add Connected Service
Add Analyzer...
3] Manage NuGet Packages...

Scope to This

Mew Solution Explorer View

11. In the Add Reference dialog box, Browse tab, click Browse and browse to the folder in
which you installed the ObjectARX SDK.

The ObjectARX 2022 SDK is installed to the following location by default:
C:\Autodesk\ObjectARX_for_AutoCAD_2022_Win_64bit_dIm

12. Continue browsing to the Inc folder. Press and hold Ctrl, and select the AcCoreMgd.dll,
AcDbMgd.dIl and AcMdg.dll. Click Add.

Select the files to reference... X
<« v <« Autodesk » ObjectARX for_AutoCAD_2022 Win_64bit_dlm * inc w (4] O Search inc
Organize + MNew folder =~ M @
| Pictures A Name Date modified Type Size -
B videos PAL 8/2/2021 1:27 PM File folder
‘= OSDisk () |J AcCoreMgd.dll 1/29/2021 6:53 AM Application exten... 372 KB

SGetCurrent IJ AcCuidll /29/2021 6:53 AM Application exten... 213 KB

arxmgd |J AcDbMagd.dll 1/29/2 Application exten... 2,185 KB
arxref |%] acdbmgdbrep.dil 1/29/2021 &:54 AM Application exten... 38 KB
= AcDx.dll 1/28/2021 6:54 AM Application exten... 201 KB
AutoCAD e
uto =
%] AcMgd.dil 1/29/2021 6:54 AM Application exten... 862 KB
Autodesk .
Hiodes [2] AcMrl 1/29/2 Application exten... 265 KB
ObjectARX_for_AutoC [@ AcSeamless.dll 1429720 Application exten... 133KB
classmap IJ AcTcMagd.dll 1 202 Application exten... 55 KB
docs IJ AcWindows.dll 1/29/2021 &:54 AM Application exten... 4,781 KB
inc - IJ AdUIMgd.dil 1/29/2021 &:54 AM Application exten... 89 KB -
_ E N
File name: |"AcMgd.d|I" "AcCoreMgd.dll" "AcDbMgd.dIl" \ Component Files (*.dIl*.tlb;*.0l ~
Add Cancel

13. Click OK to accept the changes and close the Reference Manager.

14. Right-click over one of the newly added references and choose Properties.

Page 44

AUTODESK UNIVERSITY

15. In the Properties window, click the Copy Local field and then select False from the drop-
down list.

> Solution Explorer

@e-o-5¢am| K-
Search Solution Explorer (Ctrl+;) P~

] Solution 'MyLISPFunctions' {1 project) -~
4 [m] MyLISPFunctions

& My Project
4 =B References
& Analyzers
=8 AcCoreMgd
=0 AcDbMgd
=0 AcMgd -

Solution Explorer [EEETGESTLIES

Properties
AcCoreMgd Reference Properties -

o= B s

= Misc
; E
Culture e
I -
File Type Assembly I

Note: Setting Copy Local to False instructs Microsoft Visual Studio to exclude the
referenced DLL in the build output for the project. If the referenced DLL is copied to the
build output folder, it can cause unexpected results when you load your assembly file

into AutoCAD.
16. Repeat Step 15 for AcCoreMgd, AcDbMgd and AcMdg.

17. In the Solution Explorer, right-click over the Class1.vb file and choose Rename.

18. Type myCommands and press Enter.

191 n the “You are renaming a
as well.

f il e ?classringhe flea g e

20. In the Code Editor window for the myCommands.vb file, replace the all the text in the file

with the following code statements:

Imports System

Imports Autodesk.AutoCAD.Runtime

Imports Autodesk.AutoCAD.ApplicationServices
Imports Autodesk.AutoCAD.DatabaseServices
Imports Autodesk.AutoCAD.Geometry

Imports Autodesk.AutoCAD.Editorinput

<Assembly: CommandClas¢GetType(MyLISPFunctions.

Namespace MyLISPFunctions

Public Class MyCommands

MyCommandls>

Page 45

box,

AUTODESK UNIVERSITY

End Class
End Namespace

21. In the Solution Explorer, right-click over the project node MYLISPFunctions and choose

Add > New ltem.

22.In the Add New Item dialog box, Items list, select Resource File.

23. In the Name text box, select the default name and replace it with myCommands and

click Add.

24. Click File menu > Save All.
25. Now that you have created the project, continue with the exercises in Section 5.

Appendix 3: Debugging and Building a VB .NET Project for Release

Instead of building a VB .NET project and then loading it into AutoCAD, you can launch
AutoCAD from Visual Studio and allow you to debug your project while it is executing with in the
AutoCAD program. This makes it much easier to identify problems in your code. Then once you
have finished debugging your programs, you should build a Release version of your project
instead of a Debug release.

Debugging a VB .NET Project
The following steps explain how to start debugging a VB .NET project and launch AutoCAD:

1.

2.

3.
4.

In Microsoft Visual Studio, open the project you want to debug and then click Project
menu > MyLISPFunctions Properties.

In the Project Properties window, click Debug.

File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q) 2 M

(<10 FR ARt - Y] - = | Release = AnyCPU ~ P Start v | g¥ _

E MyLISPFunctions + > [[uifeelalyERlERE: Object Browser InsMotewvb InsMote.vb [Design]]
o
= Application) . -
A Configuration: |Debug ~ Platform: | Active (Any CPU) ~
& Compile Se
r
Debug Start action s

References

() Start project

Resources

(®) Start external program: | C:\Program Files\Autodesk\ AutoCAD 2022\acad.exe Browse...
Services
Settings () Start browser with URL:
Signing Start options
My Extensions Command line arguments:]
Code Analysis

In the Configuration drop-down list, choose Debug.

Under the Start Action section, click Start External Program option and then click the
Browse button.

Page 46

AUTODESK UNIVERSITY

5.

In the Select File navigation box, browse to and choose the acad.exe file in the AutoCAD
Installation folder. Click Open.

By default, the AutoCAD 2022 installation folder is:
C:\Program Files\Autodesk\AutoCAD 2022

Once you have specified the AutoCAD executable location, you can start debugging
your project by clicking Debug menu > Start Debugging.

If the following error message is displayed, click Build menu > Configuration Manager.
Then in the Configuration Manager, choose Debug from the Active Solution
Configuration drop-down list and click Close.

Microsoft Visual Studio >

A project with an Output Type of Class Library cannot be
started directly.

In arder to debug this project, add an executable project to
this solution which references the library project. 5et the
executable project as the startup project.

After AutoCAD starts, switch back over to Visual Studio and click in the margin to the left
of the code statement you want execution to pause when running your code in
AutoCAD.

273
i Dim typeValue As New Typedvalue(LispDataType.Nil)
2
6 - If rb = Nothing Then
®
®

277 ypeValue = New TypedValue(LispDataType.Text, "Default Value™)
278 docEditor.WriteMessage(vbLf + "String assigned to FOO" + wbLf)
279 End If

280

This inserts what is known as a breakpoint which will interrupt execution.

Switch back to AutoCAD and load the debug version of the DLL for your project into
AutoCAD with the NETLOAD command.

Page 47

AUTODESK UNIVERSITY

9. Execute your custom AutoLISP function or command. When the breakpoint is reached,
execution is interrupted allowing you to check the values of variables in the current

scope.
274 Dim typeValue As New TypedValue(LispDataType.Nil})
275
276 = If rb = Mothing Then
e 277 typeValue = New TypedValue(LispDataType.Text, "Default Value™)
® :u7
279 End If

@ Mo issues found

Search (Ctrl+E) P~ Search Depth: 3 =
Mame Yalue Type e
b @ typeValue {(5019.)} Autodesk. AutoCA...
4 @ doc {Autodesk. Auto CAD ApplicationServices.Document} Autodesk AutoCA...
& ButoDelete False Boolean
& CommandinProgress "(SETFOO)" 4, = String
b S Database {Autodesk. Auto CAD.DatabaseServices.Database} Autodesk AutoCA...
b S Editor {Autodesk. Auto CAD. Editorinput.Editor} Autodesk. AutoCA...
& FormatForSave Mative {64} Autodesk AutoCA...
b M GraphicsManager {Autodesk.AutoCAD.GraphicsSystem.Manager2} Autodesk AutoCA...

10. Click the following from the Debug menu to step through your program:

i Step Into — Advances debugging into a function.
1 Step Over —Moves debuggingoutofst at ement s you don’t want
1 Step Out — Advances debugging outside of a function.

11. Click Debug > Continue to resme normal execution until the next breakpoint is reached.

12. Click Debug > Stop Debugging to end debugging and clos AutoCAD.

Building a Release Version of a VB .NET Project
When you are ready to use your custom functions and utilities created with VB .NET, you need
to build your project for release. The following steps explain how to build a Release version of a

VB .NET project:

1. In Microsoft Visual Studio, open the project you want to build and then click Build menu
> Configuration Manager.

Cenfiguration Manager ? x
Active solution configuration: /f\ctive solution platform:

Debug ~| |Any CPU ~

Dishun

'on]:

<New...» IPIatform Build Deploy

[<Edit...> I

TFLISPFOnCaans TOEB0g Any CPU "

Page 48

AUTODESK UNIVERSITY

2. Inthe Configuration Manager, click the Active Solution Configuration drop-down list and
choose Release.

3. Click Close to to save the changes made.
Click Build menu > Build MyLISPFunctions.
By default, your DLL should be built to:
C:\Dataset\SD500025\MyLISPFunctions\MyLISPFunctions\bin\Release\

Appendix 4: Using the acedGetSym and acedPutSym Methods

Note: Thi s section demonstrates how to import functi
Managed .NET API. The examples here were required in with AutoCAD 2012 and earlier to get

and set values in AutoLISP user-defined variables because the GetListSymbol and

Set LispSymbol f uncti ons didn’.t exist at that ti me

The way you work with AutoLISP variables is through the use of the methods acedGetSym and
acedPutSym , which are part of the ObjectARX programming language. These two methods are
brought into VB.NET by using a programming process called P/Invoke. The definitions of the
ObjectARX functions look like:

' Get the ObjectARX functions acedGetSym and acedPutSym
' so we can get/set AutoLISP variables
<Dllimport("acad.exe ", CharSet:=CharSet.Unicode,
CallingConvention:=CallingConvention.Cdecl,
EntryPoint:= "acedGetSym")>
Shared Function acedGetSym(ByVal varName As String ,
<Out()> ByRef varValue As IntPtr) As Integer
End Function

<Dllimport("acad.exe ", CharSet:=CharSe t.Unicode,
CallingConvention:=CallingConvention.Cdecl,
EntryPoint:= "acedPutSym")>
Shared Function acedPutSym(ByVal varName As String ,
ByVval varValue As IntPtr) As Integer
End Function

' If you want to use the acedGetSym and acedPutSym functions
" in AutoCAD 2017 and later, the function definitions would look like
" <Dllimport("accore.dll" , CharSet:=CharSet.Unicode,

CallingConvention:=CallingConvention.Cdecl,

' EntryPoint:= "?acedGetSym@@YAHPEB_WPEAPEAUresbuf@@@Z"
Shared Function acedGetSym(ByVal varName As String ,

' <Out()> ByRef varValue As IntPtr) As Integer
End Function

" <Dlllmport("accore.dll" , CharSet:= CharSet.Unicode,

CallingConvention:=CallingConvention.Cdecl,
EntryPoint:= "?acedPutSym@ @YAHPEB_WPEAUresbuf@& @Z"

Page 49

AUTODESK UNIVERSITY

' Shared Function acedPutSym(ByVal varName As String ,
' ByVval varValue As IntPtr) As Integer
" End Function

In addition to the above method definitions, you will also need to include a reference to the
System.Runtime.InteropServices namespace. Add the following to the top of your code
module:

' Required for using P/Invoke
Imports Syste m.Runtime.InteropServices

Once the method definitions are added, along with the hamespace import you can then use the
acedGetSym and acedPutSym in your application. The following two examples demonstrate
how to get and set the value of a variable named Foo.

' Defines an AutoLISP function that gets the value of a variable
<LispFunction ("FetchFoo_ Legacy")>
Public Function FetchFoo_Legacy (ByVal rb As ResultBuffer)
Dim intPtrRB As IntPir = IntPtr.Zero
Dim esVal As Integer = acedGetSyn("foo" , intPtrRB)
Dim typeValue As New TypedValue (LispDataType .Nil)

If (intPtrRB <> IntPtr .Zero) Then
Dim newRb As ResultBuffer = ResultBuffer . Create (intPtrRB, True)

For Each val As TypedValue In newRb
If val.TypeCode >=5000 Then
Dim IspDataType As LispDataType = val.TypeCode
typeValue = New TypedValue (LispDataT ype.Text,
IspDataType. ToString ()
Else
Dim dxfCodeType As DxfCode = val.TypeCode
typeValue = New TypedValue (LispDataType .Text,
dxfCodeType. ToString ()
End If
Next
End If

Return typeValue
End Function

' Defines an AutoLISP function that sets the value of a variable

<LispFunction ("SetFoo")> _

Public Function SetFoo(ByVal rb As ResuliBuffer)
Dim typeValue As New TypedValue (LispDataType .Text, "My Value")
Dim newRb As New ResultBuffer
newRb.Add(typeValue)

Dim esVal As Integer = acedPutSym("foo" , newRb.UnmanagedObject)

Page 50

AUTODESK UNIVERSITY

Return typeValue
End Function

Page 51

