

Page 1

SD226637

Clean Code: Tips for Writing Clear and Concise Code
Ben Rand
Job Industrial Services, Inc.

Description

Have you ever been frustrated by code that is difficult to read or understand (including your
own!)? Spent hours wading through hundreds of lines of code to fix a bug? Or had a hard time
changing your code because you're afraid you'll introduce some new bug? If you write code,
you've probably written your share of bad code--I know I have! In this class, you'll learn
important tips on how to elevate your coding skills to the next level. We'll explore things like the
importance of naming, what functions and classes should do, why comments are (mostly) evil,
and how proper formatting is a critical part of writing clean code. You'll learn about the important
skill of refactoring your code, and how unit tests can help you safely refactor. Whatever
language you're programming in, and whatever Autodesk product you focus on, you will learn
something valuable in this class.

Speaker(s)

Ben Rand has been using AutoCAD software since Release 12. He learned to program using
LISP in AutoCAD, worked his way up through VBA, VB6 and VB.NET, and now spends most of
his days programming in C# (occasionally still in AutoCAD!). He has worked in the Industrial
Engineering field for more than 17 years as a CAD Manager, developer and IT Director. In
2013, he was the 2013 Top DAUG overall winner at AU, and he served a mentor for the
AutoCAD Mentor All-Star team. Ben is the proud father of four children and enjoys reading and
playing a variety of sports including pickleball, volleyball, and tennis. In 2018, Ben was a
member of a USTA men's league tennis team that won a national title and another team that
was the finalist.

Learning Objectives

• Name classes, methods and variables meaningfully

• Write more cohesive, focused classes and methods

• Utilize unit tests to support refactoring towards clean code

• Write cleaner code

Page 2

What is Clean Code? – A story

As I sat down at my desk one day this summer to work on this course, I realized that my chair
wasn’t rolling properly. This wasn’t new information to me, it had been rolling poorly for several
months. I flipped the chair over and examined each of the wheels. None were missing, they
were all round…they all had the appearance of performing the function of a wheel. But as I
started looking closer, I realized that several of the wheels had a bunch of string wrapped tightly
around the inside of the wheel. So, I started unwinding the string, sometimes resorting to
scissors to cut jammed portions free.

FIGURE 1 JAMMED WHEEL

At this point, you might be thinking, “Wow, this guy is a world class procrastinator! He’ll do
anything to avoid getting his work done.” And you would not be entirely incorrect. In fact, that’s
what I thought this little story was going to be about. But as I diligently chopped away at all this
string preventing the wheels of my chair from functioning properly, I realized that this is a pretty
good analogy for why writing clean code is so important.

Probably everyone in this room has written code that works. It does what you intended it to do.
But bad code, as opposed to clean code, has a way of jamming us up when we want to make
improvements or fix bugs. It’s hard to read, easy to get lost, difficult to understand and reason
about. Bad code makes it difficult to find and fix problems, and eventually makes us afraid to
touch anything for fear of breaking something else in the system.

This class draws a lot from Robert C. Martin’s book, Clean Code: A Handbook of Agile Software
Craftsmanship. If you don’t own a copy, get on Amazon right now after this class, and order a
copy. And read it when it arrives. If you have a copy and haven’t read it in a while, read it again.
I’ve drawn some of the examples from years of experience mentoring colleagues, teaching at an
Autodesk Training Center, and tutoring my sons as they started their own journey into
programming in high school and college. But most of all, I’m drawing from my own painful,
years-long experience of writing and having to maintain my own code.

Page 3

Bad Code – A Definition

Before I define Clean Code, I should probably confess something. My name is Ben Rand, and I
have written bad code. Professionally. I’ve written bad code in many different languages: Lisp,
VBA, VB and C#, and probably some in Java, Ruby and JavaScript as well. In fact, I still write
bad code. Professionally. But I’m getting better at recognizing it when I do. And most
importantly, doing something about it when it happens.

I'm not a great programmer; I'm just a good programmer with great habits.
― Kent Beck

So, what are some of the characteristics of bad code?

• Bad code works BUT

• Is hard to read

• Is hard to reason about

• Tries to do too much

• Uses confusing names

• Relies on magic numbers/strings

• Is hard to maintain

• Is poorly formatted

• Lacks unit tests

Wait, bad code works? Yes, just like my jammed-up chair wheels, bad code frequently works.
We programmers are a persistent bunch, and we’ll continue to copy and paste, add more
nested if/else statements, and willfully ignore our ever-growing spaghetti functions until finally
our Frankenstein baby of a project takes its first painful steps into the world and, surprisingly,
actually does something close to what we intended it to do.

The problem with most bad code isn’t that it doesn’t work. The main problem with bad code is
that it’s so very difficult to understand it, debug it, and change it later on.

Clean Code – A Definition

What is “clean code”? Let me start with a list of some of the characteristics of clean code.

• Clean code works AND

• Is easy to read

• Is easy to reason about

• Is easy to extend

• Is easy to understand, including several weeks or months from now

• Is easy to maintain

• Has unit tests

Both clean and bad code tend to work.

Page 4

So, what’s the problem? How often have you gotten a program to work, and then the users
come back and say, “That’s nice, now can you make it do this?” You scratch your head, add a
few more levels of nested if/else statements and voila! It works. For a while. Until it suddenly
doesn’t.

I recently had to make what I figured would be a relatively easy change to a large project I’ve
been working on for several years. While the actual change took maybe 2 minutes to code, I
spent more than an hour searching through my own code, trying to find where the change
needed to happen. Bad code does this to you again and again and again.

Inside every large program, there is a small program trying to get out.
--C.A.R. Hoare

It’s important to understand that writing code that works and writing clean code are two distinct
activities. We first write code that works, then we refactor to clean code.

The importance of Unit Tests
You may have also noticed that one of the characteristics that differentiates clean code from
bad code is the presence (or absence) of unit tests. Why is this so important?

Without unit tests, your code becomes fragile and difficult to change. How do you know whether
or not a new change you are making a) fixed the problem you intended to fix AND b) doesn’t
cause a problem somewhere else? Without unit tests, you really don’t. Eventually your code rots
to the point that you are afraid of making changes because you don’t know what you might
break as you “fix” the system. Don’t be afraid of your code. Write unit tests.

Elements of Clean Code

In this class, we’re going to explore several elements of clean code. Along the way, we’ll look at
many examples in a variety of languages you might encounter in the Autodesk ecosphere to
illustrate these concepts. I felt like it was important to show you that bad code is not confined to
a certain language (I’m looking at you, VBA!). Oh no, we can write bad code in ANY language
(even you, Ruby!). And while the tooling to clean up our messes may vary between IDEs, the
principles of clean code are pretty well language agnostic.

On the next page, I humbly submit before you a single function I once wrote in VBA. Go ahead
and feast your eyes. I realize it’s too small to really read, but the fact that it took 5 separate
screenshots to capture a single function should tell you a lot. In retrospect, this single function
may violate nearly every principle of writing clean code. It worked, but it was a nightmare to test.
And eventually I was afraid of making changes. But at least my indentations are good!

Page 5

Figure 2 A very long method (VBA)--but wait, there's more!

Page 6

Figure 3 A very long function, continued

Page 7

Keep in mind that clean code is more of a process, a journey, than it is a final destination. I
know you’re all going to hate this analogy, but you should look at writing code the same way you
did writing papers in high school and college. You write a first rough draft, then review and
revise, and revise some more, until you arrive at something better, cleaner, than your first draft.
Your second, third, fourth drafts of a paper were always better than the rough draft. It is the
same with code, we just have a different term for it: refactoring.

Good software and good writing requires that every line has been rewritten, on
average, at least 10 times.1

--Yevgeniy Brikman

Some elements of clean code that I’ll discuss in this class are certainly debatable. For example,
should indents be 2 spaces, or 4? Should maximum line length be 80 characters, or 120? If you
program by yourself, those are somewhat personal decisions. If you’re in a team, they’re team
decisions. Neither is right or wrong, as long as you indent (more on this later), or think about
why untamed line lengths make code unreadable. There is no “One True Way”™ to write clean
code, but there are important principles and guidelines. What we’re really after in learning to
write clean code is to put more thought into the various elements of your code than you may
have previously done.

Formatting
I’m going to start with formatting, which is a critical aspect of writing clean code. Formatting our
code in a way that makes the code easy to read is a critical but frequently overlooked activity.
While many modern IDE’s and text editors have powerful, automatic indentation capabilities, it’s
still important to spend some time ensuring your code is properly formatted.

Indentation
Let’s look at an example using JavaScript. Quick, tell me something about what the code below
does.

var rows=prompt("How many rows for your multiplication table?"); var cols=prompt("How

many columns for your multiplication table?"); if(rows=="" || rows==null) rows=10;

if(cols=="" || cols==null) cols=10; createTable(rows, cols); function

createTable(rows, cols){var j=1; var output="<table border='1' width='500'

cellspacing='0'cellpadding='5'>"; for(i=1;i<=rows;i++){output=output + "<tr>";

while(j<=cols){output=output + "<td>" + i*j + "</td>"; j=j+1;}output=output + "</tr>";

j=1;}output=output + "</table>"; document.write(output);}

Sample 1: Minified, unindented code (JS)

It’s hard to make sense of that ugly mess. Full disclosure, this is minified code. Hopefully no one
would actually write their code like this. But far too often, beginners neglect proper indenting.
This not only makes it hard to find where blocks of code start and end, but it can also lead to
errors such as forgetting to terminate blocks properly. Ever forgotten a closing parenthesis in

1 Yevgeniy Brikman: https://www.ybrikman.com/writing/2018/08/12/the-10-to-1-rule-of-writing-and-
programming/

https://www.ybrikman.com/writing/2018/08/12/the-10-to-1-rule-of-writing-and-programming/
https://www.ybrikman.com/writing/2018/08/12/the-10-to-1-rule-of-writing-and-programming/

Page 8

LISP? Even if all code blocks are terminated correctly, unindented code is just harder to read.
Let’s look at the same code with improved indenting and spacing.

var rows = prompt("How many rows for your multiplication table?");

var cols = prompt("How many columns for your multiplication table?");

if(rows == "" || rows == null)

rows = 10;

if(cols == "" || cols == null)

cols = 10;

createTable(rows, cols);

function createTable(rows, cols)

{

 var j = 1;

 var output = "<table border='1' width='500' cellspacing='0' cellpadding='5'>";

 for(i = 1;i <= rows;i++)

 {

 output = output + "<tr>";

 while(j <= cols)

 {

 output = output + "<td>" + i * j + "</td>";

 j = j+1;

 }

 output = output + "</tr>";

 j = 1;

 }

 output = output + "</table>";

 document.write(output);

}

Sample 2: Indented code (JS)

Same code, but formatted with better spacing, line breaks and indentation. Clearly this is much
more readable than Sample 1.

Here’s an incomplete (non-working) sample of C# code that does proper indenting for each
“level” of code. Code within each successive block (i.e. within a set of braces) should be
indented. Some languages, like python, require proper indentation since they lack line and block
termination symbols like ; and } used in C#, JavaScript and Java.

namespace CleanCode

{

 class LayerService

 {

 public IEnumerable<string> GetLayers()

 {

 if(condition == true)

 {

 //do something

 }

 return layers;

 }

 }

}

Page 9

Sample 3: Indentations for every block (C#)

In some languages, you might see the standard more like the one below, with the opening brace
on the same line as the statement.

namespace CleanCode {

 class LayerService {

 public IEnumerable<string> GetLayers() {

 if(condition == true) {

 //do something

 }

 return layers;

 }

 }

}

Sample 4: Braces at end of line (C#)

This is a little more concise, but personally I think it’s harder to read because my eyes have to
scan all the way to the end of each line, looking for an opening brace. And () and {} and [] have
a way of blending together if I’m not paying attention, so the opening brace of each block just
gets lost at the end. For the sake of a few more lines in my editor, I prefer my braces to line up
with each other.

Magic Strings and Numbers
A common problem is the use of “magic” numbers. Magic numbers clearly have some important
meaning in the system, but unless you hold the magic decoder ring to decipher the meaning of
that number in the code, it’s hard to know what’s going on. I’ll use an example from AutoLISP to
illustrate.

(setvar "osmode" 512)

(setq “osmode” 29)

Sample 5: Magic numbers obscure meaning (AutoLISP)

What does the value 512 represent? What about 29? If you know your way around Autocad,
you might know this. But what if you don’t? Maybe adding a “crutch” comment will help.

(setvar "osmode" 512) ;set near on

Sample 6: Comments help--but have to be maintained (AutoLISP)

While this comment helps, it means that we have to read beyond the code to figure out what
‘512’ means. A better alternative is to stop using “magic” numbers altogether and replace them
with well-named variables.

(setq END_SNAP 1

 MID_SNAP 2

 CENTER_SNAP 4

 NODE_SNAP 8

 QUADRANT_SNAP 16)

Sample 7: Assign named variables to magic numbers (AutoLISP)

Page 10

This does a few things. Most importantly, we provide a meaningful (readable) name for the
underlying value. And it provides a single place we need to go to make changes if the “magic
number” should need to change.

Now compare the sample below to Sample 5. Which code would you rather try to make sense
of, or change? The value “29” is difficult to unpack to figure out what it does. Using explicitly
named variables makes it pretty clear which snaps are being turned on, without the need for
comments that also need to be maintained.

(setq “osmode” (+ END_SNAP CENTER_SNAP NODE_SNAP QUADRANT_SNAP))

Sample 8: Replacing magic numbers with well-named variables (AutoLISP)

Writing clean code does not always mean writing code with the fewest number of characters. It
means writing code in a way that is easy to understand and maintain, both today while you’re
thinking about it, and several months from now when you (or a colleague) has to come back and
figure out what the code is doing.

Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live.

--Martin Golding

Strings are not immune to this either. A colleague of mine loves to copy and paste code like this:

;CS-2

(cond ((and (= block "CS-2")(< 8.1 (distof cadworxalpha 4)))

(alert "Not suggested for this size pipe!")))

Sample 9: Watch for repeating text (AutoLISP)

The alert message, “Not suggested for this size pipe!” appeared 28 times in one of his code files
I recently reviewed! That’s 28 places that potentially need to change when it’s decided that the
message should change. Consider using variables (or constants in languages that support them
for repeating strings.

(setq NOT_SUGGESTED_MSG "Not suggested for this size pipe!")

...

(alert NOT_SUGGESTED_MSG)

Sample 10: Replace magic strings with named variables (AutoLISP)

Horizontal and Vertical Spacing
An important aspect of readable code is making efforts to get code to fit within the screen. Any
time you have to scroll horizontally to see the end of a line of code, you’re creating a pain point.
It’s hard to remember what the first part of the line is doing by the time you mentally switch
gears from reading code to moving your cursor over the scroll bar to looking back at the code—
what did the first part of the line say?

Below is an example of a C# Linq query that doesn’t fit on a typical screen.

Page 11

Sample 11: A long line of code (C#)

In some languages, like C#, line breaks don’t indicate the end of a line, so the example above
can be improved by things like this.

public void AvoidLongHorizontalLines()

{

 var employees = new List<Employee>();

 var emps = employees.Where(e => e.FirstName.StartsWith("B"))

 .OrderBy(e => e.FirstName)

 .ThenBy(e => e.LastName)

 .Select(e => $"{e.LastName}, {e.FirstName}");

}

Sample 12: Breaking up long lines (C#)

More important is the vertical length of functions and classes. Think back to Figure 3. A single
function requiring 5 screens filled with code is simply too long for your brain to process. It’s
unreadable, difficult to reason about, and clearly trying to do way too much.

Functions should hardly ever be 20 lines long.
--Bob Martin

Indeed, classes that take more than a screen full of code are probably trying to do too much. At
the same time, our code shouldn’t be jammed together arbitrarily just to make it fit. Here’s an
example using code you might find in an AutoCAD application.

Sample 13 No white space (C#)

Page 12

Due to the lack of whitespace (extra line breaks), this code is more difficult to read than it should
be. Just as paragraphs are used to break up groups of sentences in a book, empty lines should
be used to break up the different ideas within our code.

Did you notice the two if clauses in the code (lines 22 and 27)? If you weren’t looking for them,
you probably missed them because I used a single line form of the if statement. Just because
we can do something to save a bit of vertical space, doesn’t mean we should. Branching logic
represents an important change in the flow of our program—here it’s actually an exit point!—and
we should make it as easy as possible to see these changes, just by glancing at the code.

Below is the same sample, with some added white space in between important concepts within
the function, kind of like paragraphs in a book. Breaking code up this way often leads to extract
method refactoring as we recognize where chunks of code could be moved to their own
functions. For example, the code for getting the start and end points is very similar and should
probably be extracted out to a separate function whose only responsibility is to return a picked
point.

public void Draw()

{

 Editor editor = Application.DocumentManager.MdiActiveDocument.Editor;

 Document document = Application.DocumentManager.MdiActiveDocument;

 Database database = Application.DocumentManager.MdiActiveDocument.Database;

 PromptPointOptions startPointOptions = new PromptPointOptions("Pick start point:

");

 PromptPointResult pointResult = editor.GetPoint(startPointOptions);

 if (pointResult.Status != PromptStatus.OK)

 return;

 Point3d startPoint = pointResult.Value;

 PromptPointOptions endPointOptions = new PromptPointOptions("Pick end point:");

 endPointOptions.BasePoint = startPoint;

 pointResult = editor.GetPoint(endPointOptions);

 if (pointResult.Status != PromptStatus.OK)

 return;

 Point3d endPoint = pointResult.Value;

 using (Transaction transaction = document.TransactionManager.StartTransaction())

 {

 BlockTable blockTable =

(BlockTable)transaction.GetObject(database.BlockTableId, OpenMode.ForRead);

 BlockTableRecord modelSpace =

(BlockTableRecord)transaction.GetObject(blockTable[BlockTableRecord.ModelSpace],

OpenMode.ForRead);

 Line line = new Line(startPoint, endPoint);

 modelSpace.AppendEntity(line);

 transaction.AddNewlyCreatedDBObject(line, true);

 transaction.Commit();

 }

}

Sample 14 Use whitespace to enhance readability (C#)

Page 13

Comments
In the book Clean Code, the author states that “comments are, at best, a necessary evil.” Why
would he say this? Aren’t we supposed to comment our code so that everyone else who later
maintains our code will know what we’ve done? Comments certainly have a place, but they are
also overused and abused.

Keep in mind when reading code, your eyes see comments, and your brain processes what it
sees. Comments don’t actually do anything when your program runs, but your brain still has to
process them when you’re modifying the code. And then it has to spend additional time figuring
out if the commented code actually does what the comment says it does. Or your brain
assumes that the comment is correct, and doesn’t bother checking the code or the comment at
all! In this case, the comments just become white noise that you train your brain to ignore.

I see a lot of sample code that relies heavily on comments to explain what is happening in the
code. For a sample, where the point of the code is to teach you how to do something,
comments are probably acceptable. For production code, many of those commented sections
should probably be broken up into smaller functions, each with an intention revealing name,
such that the need for the comment is largely eliminated. In the sections that follow, I discuss
several points to consider before adding comments to your code.

Comments need to be maintained
Comments need to be maintained every bit as much as our code does. Can you spot the
problem with the comments for the Grid constructor in the C# sample below?

/// <summary>

/// Represents a grid with rows and columns.

/// </summary>

/// <param name="startPoint"></param>

/// <param name="numRows"></param>

/// <param name="numCols"></param>

public Grid(Point3d startPoint, int numRows, int numCols, double spacing)
{ ... }
Sample 15 Comments must be maintained

The comments indicate three arguments when, in fact, there are four. Presumably, the spacing
argument was added after the initial comments were written. This kind of thing happens all the
time with comments. If not meticulously maintained, comments become outdated, misleading, or
just wrong.

Comments explaining sections of code
We frequently add comments to break up sections of really long functions, explaining chunks of
code that should probably be broken out into smaller functions. Or the comment might explain a
tricky bit of logic. If these chunks of code are broken out into separate functions and given good,
intention revealing names, the need for the comment disappears.

Take this JavaScript example.

 //only do this if we’re on the home page of the site

Page 14

 if (window.location.pathname == "/") {

 ...

 }

Sample 16 Comment explains conditional

The comment explains what the conditional clause of the if statement does, which is arguably
helpful. However, we could break that bit of logic out into a separate function with an intention
revealing name.

function isHomePage(){

 return window.location.pathname == "/";

}

Sample 17 Move conditional to intention revealing named function

This eliminates the need for the comment. Our code is self-documenting, readable, clean.

 if (isHomePage()) {

 ...

 }

Sample 18 Comment is no longer necessary

Comments with versioning information
Frequently we add comments to our code to supply version information, or to identify who made
a particular change in the code.

//Modified by Ben

Sample 19 Comment indicating who made a change

If you’re using a version control system—which you absolutely should be—these types of
comments are completely unnecessary. Your version control system2 tracks all that information
automatically, leaving our code clean.

Figure 4 Version control information

Again, version control is really good at keeping track of all that automatically. Check out what
kind of information we get from the Blame command in SVN. The second column reveals who
last changed a particular line of code. No need to dirty up the code with comments that are hard
to maintain and will likely be incorrect after a few revisions.

2 This is a good place to plug my AU course on using source control…

Page 15

Figure 5 Blame command from version control

Zombie Code comments
Frequently we comment out chunks of code in favor of some new code. I do this a lot while I’m
testing to make sure the new code works, just in case I need to immediately revert to the old
code. But again, if you’re using a version control system—which you absolutely should be—this
isn’t necessary. Your old code is still there if you need to restore it. Proper usage of version
control allows you to delete code with impunity.

Commented out code that gets committed to version control has a dangerous tendency to turn
into zombie code. It hangs in there forever, cluttering your code. By the time you circle back to
that old commented out code, you have to ask yourself, “Why is this commented out? Is it still
important? Will I need to add it back? Whoever wrote this must have thought it was important
enough to leave in, so I better just leave it alone.” And there it stays.

TODO comments
In Visual Studio, you can add //TODO comments, which show up in the Tasks window. This can
be an OK form of comment, as long as you regularly budget time to go in and take care of the
TODOs!

What usually happens to me is I never get back to them and so my task list grows and grows. If
I know the code was problematic enough to warrant a TODO comment, I should have just fixed
it in the first place. Below is a lovely example of my overgrown TODO list, from one of my main
projects. I’ve added a TODO comment indicating that I may not need this abstract class. The
last time I touched this file, according to version control? May 11, 2017.

Page 16

Figure 6 Overgrown TODO list

So TODOs, and the associated code that needs attention become like weeds. Let them grow
too long, and they take over your garden.

Regions
In .NET languages (VB or C#), we can declare regions which are collapsible areas in our code.
We use these when our classes get lengthy and we want to collapse or hide certain sections
that we may not be working on. The problem with extensive use of regions is that they
frequently shield us from the fact that our class has grown overly long, probably has too many
responsibilities, and needs to be refactored into multiple classes.

Functions
Functions should be short, and do one thing. Remember the code way back in Figure 2 and
Figure 3, my VBA function that required 5 screenshots to capture in its entirety? That function
had many responsibilities: collect several different inputs from the user, calculate and translate
points based on that input, and then use that data to draw something. The name of the
function? Straight. What in the world does that mean? What intent does that convey to the next
programmer who has to maintain that mess?

The first rule of functions is that they should be small. The second rule of
functions is that they should be smaller than that.

--Bob Martin

Page 17

Functions should use verb-y names, like GetUserName, CheckBalance, or DrawLine.

One of the things we can do to keep functions short is to separate them into two broad
categories: command and query. A command function should do something, such as set
properties or change values on an object. A query function should return something, such as a
set of layer names or an object of some sort. Critically, functions should not do both. VB
differentiates between these two types of methods by offering Sub and Function methods. In C#
a void method is the equivalent to VB’s Sub.

Consider the following example.

public bool SetUserName(string userName)

{

 UserName = userName;

 return true;

}

Sample 20 Functions should do something or query for something, not both (C#)

The function name SetUserName indicates that the code will do something (set a user name),
but the fact that it returns a Boolean value causes confusion. The examples below make a
better distinction between functions which do something versus functions which query for
something.

public void SetUserName(string userName)

{

 UserName = userName;

}

public bool HasUserName()

{

 return !string.IsNullOrEmpty(UserName);

}

 Sample 21 Functions which clearly separate doing from querying

If/Else Conditionals
When using conditionals, we tend to overcomplicate things.

bool someCondition;

if(someCondition == true)

{ //do something }

Sample 22 Conditionals (C#)

The “== true” part of that statement is redundant. If always checks for a true condition. So
leaving the “== true” out of the conditional works just fine.

if(someCondition)

You only need the check if you’re evaluating that the conditional evaluates false.

Page 18

if(someCondition == false)

Or more tersely:

if(!someCondition)

Use negative condition checks sparingly. Yes, there are times where you need them, but they
make your brain do extra churn. This is bad:

if(someCondition != false)

This is especially bad:

if(!someCondition == false)

In statement form, these work out to, “If someCondition is not false…” In other words, it’s “sort of
a double negative,”3 and yes, it makes my brain hurt too. If you are trying to ask “If
someCondition is true” then just say it that way! Clean code should not make your brain hurt.

Here’s another thing we like to do:

public bool DoStringsMatch(string source, string target)

{

 if (source == target)

{

 return true;

 }

 else

{

 return false;

}

}

Sample 23 Conditional evaluation--long

The comparison source == target evaluates to true or false, so just return the result of the
evaluation.

public bool DoStringsMatch(string source, string target)

{

return source == target;

}

Sample 24 Conditional evaluation--terse

Naming
I would nominate naming (of classes, methods, variables, etc) as possibly the single most
important thing you can do to bring clarity to your code.

Names of classes, methods, and variables should:

• Reveal intent

3 Donald Trump, Press Conference, July 17, 2018

Page 19

• Be pronounceable

• Avoid disinformation

• Use nouns for classes

• Use verbs (or verb phrases) for functions

• Avoid single letter variables

• Use long descriptive names instead of short, cryptic names

• Avoid “Hungarian” notation prefixes

It’s hard to get names right the first time. I usually have to start with something I know is
temporary then use a Rename refactoring later to rename classes, methods and variables as
the intent of my code becomes clearer to me—as I’m coding. I use that refactoring frequently.

It often helps to figure out what story your code is trying to tell, what problem it is trying to solve.
Writing out a simple narrative can be useful in identifying the primary actors (i.e. classes) in the
story, what information each actor holds (i.e. properties, fields), and how these actors should
interact with one another (i.e. methods).

Let’s start with variable names. Consider the following VB code which you might see in any
number of AutoCAD samples.

Using tr As Transaction = db.TransactionManager.StartTransaction()

'Do stuff

 tr.Commit()

End Using

Sample 25 Variable names are important too (VB)

Is the variable tr well-named? How do we pronounce that when reasoning about the code—
‘truh’? ‘Tee Arrrrr’? It’s completely understandable why “tr” might be used. It’s less to type, and
we programmers are a lazy bunch. But if you program in a good IDE, you probably only have to
type 2-3 characters of a variable name anyway before the IDE suggests an auto completion.

Worse though, is that “tr” is not particularly intention revealing. If tr.Commit() is several lines (or
screenfuls!) of code away from where the variable is declared, our eyes have to flick back and
forth to establish that tr is a Transaction object. What about common variants such as “tran” or
“trans”? These are somewhat better, maybe. But what’s wrong with simply naming the variable
“transaction”? No more ambiguity.

There are certainly cases where your team might decide that a certain shortcut naming scheme
makes sense for well-known objects, stuff you interact with all the time. In the AutoCAD API,
“tran” or “trans”, “db”, “ed”, and “doc” are all pretty commonly found in online samples. If your
team agrees to adhere to standard variable names like these, that’s fine. But be consistent
about it. It’s pretty easy to wind up with “tran” here, “trans” over there, and “tr” somewhere else.
And without some sort of shared knowledgebase, these short names just aren’t as explicit as
“transaction”, or “database”, or “editor”, or “document”.

In times hopefully past, Hungarian notation mandated type prefixes on the front of variable
names. In a C# Windows Form application, you’d see things like:

Page 20

TextBox txtFirstName;

TextBox txtLastName;

ComboBox cboDepartments;

Sample 26 Hungarian notation adds a prefix to variables to indicate type

Adding type prefixes just isn’t necessary, and makes it harder to reason about the code.

TextBox firstName;

TextBox lastName;

ComboBox departments;

Sample 27 Type prefixes aren't very useful

Likewise adding suffixes such as List to the end of a variable name, for example employeeList,
is unnecessary. If you’re working with multiple employee objects, name the variable employees.

If naming of variables is important, naming of methods and classes is even more so. One of my
sons was struggling with an assignment in his Java programming class. In his solution, I found
this critical statement:

if(valid(numbersDoubledSum(doubler(numSeperator(userInput))),

 numberSum(numSeperator(userInput))) != false)

Sample 28 Bad names hide intent (Java)

Hopefully you’re as puzzled by this as I was. Absent any other information about the problem it’s
trying to solve, it’s just about impossible to understand what this code is supposed to do. Later,
I’ll demonstrate how this previously confusing code can be refactored towards a cleaner
solution. Let’s talk briefly about classes first.

Classes
In Clean Code, Bob Martin states that the first rule of classes is they should be short. The
second rule is they should be shorter than that. Why should classes be short? It’s because they
should be focused on doing one thing. There’s an acronym used to describe classes: SOLID.
The S stands for Single Responsibility Principle, which means that a class should have a single
responsibility, with a single reason to change.

A good question to ask yourself when reviewing a class is, “Can I describe the class in 25 words
or less, without using ‘if’, ’and’, ‘or’, or ‘but’?” If the answer is no, then the class likely has too
many responsibilities, and should be refactored into multiple smaller classes.

Earlier, we discussed my son’s school project in which they were attempting to validate a credit
card. A class with this responsibility might be named CreditCardValidator, and it might have a
function named isValid(). Such a class should not have additional responsibilities such as
getBalance() or makePayment(). That’s because each of those functions would imply a slew of
other considerations, such as which account to access, or how a payment is to be transmitted.
These concerns take us further and further from the task at hand: validating a credit card
number. We’ll see some of this in action in the following Refactoring sections.

Page 21

Refactoring to cleaner code: Credit Card Validator
In the additional materials for this class, you’ll find the Practice2_CreditCardProblem folder,
which contains a Java project based on my son’s credit card validation assignment. Look in the
Practice2_CreditCardProblem\src\edu\jatc\creditcard folder for the following files:

• Start.java—the first iteration of the project

• Start2.java—the second iteration of the project, mostly renaming methods

• Start3.java—the third iteration of the project, moving methods to CreditCardValidator,
and subsequent reworking of the main method.

• CreditCardValidator.java—final class that does the real work in this project, validating
credit card numbers per a specified algorithm

There are also some unit tests found in the Tests\CreditCardValidatorTests.java. Even if you
don’t know Java, hopefully what you’ve learned to this point will be of value as the code is
transformed. In Start.java we find the main method, complete with some comments explaining
the “rules” for validating a credit card number.

 // Rule 1: Double every 2nd digit from right to left, starting with second digit

from right

 // If doubling the digit results in two-digit number, add the two digits

to get a

 // single digit number.

 // Rule 2: Add together all the resulting single digit numbers from Rule 1.

 // Rule 3: Add every other digit from right to left starting from the right-most

digit.

 // Rule 4: Sum the result from step 2 and step 3.

 // If the result is divisible by 10, card number is valid, otherwise it

is invalid.

 // Valid number: 4388576018410707

 // Invalid number: 4388576018402626

 public static void main(String[] args)

 {

 Scanner input = new Scanner(System.in);

 System.out.println("Please enter your credit card number");

 long userInput = input.nextLong();

 if(valid(numbersDoubledSum(doubler(numSeperator(userInput))) ,

numberSum(numSeperator(userInput))) != false)

 {

 System.out.println("Your card is valid!");

 }

 else

 {

 System.out.println("Your card is invalid");

 }

 }

The variable userInput (line 20 in the source file) is not a good name. Instead, it should be
named for what it represents—a credit card number—creditCardNumber or maybe ccNumber.

Next, the method names valid, numbersDoubledSum, numSeperator and doubler are just
confusing. They don’t reveal intent. We have to go look at the code within each method to have
any hope of knowing what each does. Each represents one of the rules, or a necessary step in
fulfilling one of those rules.

Page 22

We renamed these methods to better reflect what each method does, so:

• numSeparator() became getDigits()

• numberSum() became oddDigitsCheckSum()

• doubler() and numbersDoubledSum() were merged into evenDigitsCheckSum()4

• valid() became isValid()

Ideally, method names should be some sort of verb, denoting an action that will take place. It’s a
lot easier to get the gist of these method names than the original numberSum() and
numbersDoubledSum().

On line 42 we found a magic number:

 if(numbers.size() == 16)

This was changed to a constant and given the name _CCLENGTH, which you can see in
Start2.java, line 15.

 private static final int _CCLENGTH = 16;

The previously confusing, but all-important line of code from the original program is much more
readable in Start2.java, line 23:

 if(isValid(oddDigitCheckSum(getDigits(ccNumber)),

evenDigitCheckSum(getDigits(ccNumber))) != false)

We could also lose the != false check to make this less confusing.

Looking through the “Start2” class, we see improvement. But the class is still too long, it has too
many responsibilities. Validation of the number itself should be moved into a separate class
dedicated to just that.

With this in mind, I suggested a new class, named CreditCardValidator. This name is a noun,
and reveals the intent of the class—as long as we don’t add additional responsibilities to it such
as getAccountBalance(). The renamed functions found in Start2, were then moved to
CreditCardValidator. As I did this, I also wrote unit tests (found in
tests\CreditCardValidatorTests) to confirm that each method behaved as expected.

Unit Tests
Let’s take a look at one of the functions getDigits() and its associated test,
testGetDigitsReturnsDigitsInReverseOrder(). The purpose of the function was to split a long
number up into an array of separate digits, and return the digits in reverse order. The solution
below is certainly not the only way to do this. I was trying to preserve as much of my son’s

4 In retrospect, I would have used calculateOddDigitsCheckSum() and calculateEvenDigitsCheckSum() to
make the last two method names more verb-y.

Page 23

original code as possible, while still refactoring towards a better overall solution. Later, the
“internals” of each method can be revisited and improved as needed.

 public ArrayList<Integer> getDigits()

 {

 ArrayList<Integer> digits = new ArrayList<>();

 long ccNumber = _ccNumber;

 while(ccNumber > 0)

 {

 digits.add((int) (ccNumber % 10));

 ccNumber /= 10;

 }

 while(digits.size() < _CCLENGTH)

 {

 digits.add(0);

 }

 return digits;

 }

And an associated test:

 @Test

 public void testGetDigitsReturnsDigitsInReverseOrder()

 {

 //arrange

 CreditCardValidator sut = new CreditCardValidator(4388576018410707L);

 //act

 ArrayList<Integer> actual = sut.getDigits();

 //assert

 assertEquals(16, actual.size());

 assertEquals(7, (int)actual.get(0));

 assertEquals(4, (int)actual.get(15));

 }

Unit tests are frequently arranged into three sections: Arrange, Act, Assert. In the first section,
we “arrange” the system under test (i.e. the class to be tested) by setting up all the conditions
necessary to test an object of that type. Here, our SUT is an instance of the CreditCardValidator
class, which we instantiate with a sample credit card number.

The second section of the test, performs some action or sets some state (i.e. calls a function)
that we can then test for correctness. When some value is returned by the function, I typically
name the variable holding the result, actual. Here, we call the getDigits function and store the
returned value.

The “assert” section is where we assert, or validate, whether the actual result from the system
we’re testing meets our expectations. This is typically in the form of a true/false check asserting
that the actual result meets with an expected result.

Each unit test framework has slight variations on the syntax of these statements, but they
usually boil down to something like the examples shown below (JUnit and NUnit respectively):

assertEquals(expected, actual);

Page 24

Assert.That(actual, Is.EqualTo(expected));

There are many more tests included in the sample code for you to look at, each ensuring that
the various functions of CreditCardValidator are working as expected.

Typically, you should avoid having too many assertions in a single test, and you also should
avoid testing too many things in a single test. Each test function should test a very specific
behavior of the function in question. Functions with branches should have separate tests for
each branch in logic.

There’s MUCH more I could say about unit testing (another class all by itself?), but alas, we
need to move on. There are some great books on Unit Testing I highly recommend in the
Suggested Reading List at the end of this handout.

In Start3.java, you can see the final progression of the main method.

public class Start3

{

 public static void main(String[] args)

 {

 Scanner input = new Scanner(System.in);

 System.out.println("Please enter your credit card number");

 long ccNumber = input.nextLong();

 input.close();

 CreditCardValidator validator = new CreditCardValidator(ccNumber);

 validate(validator);

 }

 private static void validate(CreditCardValidator validator)

 {

 if(validator.isValid())

 {

 System.out.println(String.format("Your card ending with %s is valid!",

validator.endsWith()));

 }

 else

 {

 System.out.println(String.format("Your card ending with %s is invalid",

validator.endsWith()));

 }

 }

}

This is the entirety of the Start3 class—approximately 25 lines of code. It’s easy to see there’s
an input section, and a processing/output section. How the processing is done is hidden from
the caller. My son’s previously cryptic line of code turned essentially into this:

CreditCardValidator validator = new CreditCardValidator(ccNumber);

if(validator.isValid())

{

 ...

}

Sample 29 Good names reveal intent (Java)

Page 25

That’s a lot more readable. Interestingly, very little of the original code within each function
needed to be changed. It just needed to be better organized, with better names. So our final
isValid() function in CreditCardValidator contains the implementation details of how the class
determines the validity of a credit card number.

public boolean isValid()

{

 ArrayList<Integer> digits = getDigits();

 int oddCheckSum = oddDigitsCheckSum(digits);

 int evenCheckSum = evenDigitsCheckSum(digits);

 int checkSum = (oddCheckSum + evenCheckSum);

 int remainder = checkSum % 10;

 return remainder == 0;

}

Sample 30 Hide implementation details behind well named functions

Even without knowing the details of how oddDigitsCheckSum() and evenDigitsCheckSum() are
calculated, you have a fair sense in this function of what each of the parts do, and how a credit
card number’s validity are established (well, per the constraints of this particular assignment
anyway).

Refactoring to cleaner code: SRP (Single Responsibility Principle) and
Abstractions
One place I frequently see problems is with forms (dialog boxes) taking on too many
responsibilities. Suppose you’re writing an AutoCAD application in which you need to present a
list of layers to the user. Upon selection of a layer, the application does something, such as
setting the current layer. The sample files for this course include a C# solution found in the
CleanCodeLayer folder.

The common approach is to create a form and then embed all the code required to get the list of
layers, select a layer, and do something with the selected layer, directly in the form’s code-
behind. The form’s Load() function may contain code to extract data from a database, read from
a text file, or maybe gathers information from the active AutoCAD document. The button’s
Click() function collects the selections from the form, then uses that data to start a transaction
with the AutoCAD database and draws or sets something in the drawing. This is too many
responsibilities for this lowly form class.

In order to properly describe the role of this form we have to say something like, “This class
gathers layer information from somewhere, AND collects user input, AND does something.” All
of these ANDs used to describe the role of the form are a giveaway that it has too many
responsibilities.

Here’s a sample form, and the code-behind to illustrate this concept.

Page 26

Figure 7 A form to interact with the user

 public partial class LayerSelector : Form

 {

 public LayerSelector()

 {

 InitializeComponent();

 }

 private void Ok_Click(object sender, EventArgs e)

 {

 var doc =

Autodesk.AutoCAD.ApplicationServices.Core.Application.DocumentManager.MdiActiveDocumen

t;

 var db = doc.Database;

 string layerName = (string)Layers.SelectedItem;

 if (!string.IsNullOrEmpty(layerName))

 {

 using (var transaction = doc.TransactionManager.StartTransaction())

 {

 var layerTable =

(LayerTable)transaction.GetObject(db.LayerTableId, OpenMode.ForRead);

 if (layerTable.Has(layerName))

 {

 var layer = transaction.GetObject(layerTable[layerName],

OpenMode.ForRead);

 db.Clayer = layer.ObjectId;

 }

 transaction.Commit();

 }

 }

 }

 private void LayerSelector_Load(object sender, EventArgs e)

 {

 var doc =

Autodesk.AutoCAD.ApplicationServices.Core.Application.DocumentManager.MdiActiveDocumen

t;

 var db = doc.Database;

 var layers = new List<string>();

 using (var transaction = doc.TransactionManager.StartTransaction())

 {

 var layerTable = (LayerTable)transaction.GetObject(db.LayerTableId,

OpenMode.ForRead);

Page 27

 foreach (var layerId in layerTable)

 {

 var layer = (LayerTableRecord)transaction.GetObject(layerId,

OpenMode.ForRead);

 layers.Add(layer.Name);

 }

 }

 Layers.DataSource = layers;

 }

 }

Sample 31 Form code has too many responsibilities (C#)

In order to make this into clean code, we need to understand the single responsibility of the
form, which is to gather input from the user. While your form might need to display a list of data
from which the user is supposed to select, it should not typically be the form’s responsibility to
gather the data to be displayed. Instead, the data, or the responsibility for gathering the data
should be passed into the class that will be using the data. When the OK button is clicked, the
dialog should go away, handing responsibility for processing the input data back to the caller of
the form. The caller decides what to do with the data collected on the form.

Looking at Sample 31’s Load function, we can see that almost all of that code really boils down
to getting a list of layers from somewhere—in this case from the current AutoCAD drawing. But
what if we wanted to get the list of layers from a database, an Excel spreadsheet, or any other
source? Do we need different forms for each source? No! If we separate out what changes (the
source of the layers to display) from the true responsibility of the form (to display any arbitrary
list of layers to allow the user to pick one), then we’ve taken a big step towards writing cleaner
code.

We can do this by introducing an abstraction on which the form depends to retrieve the list of
layers. Not all languages support abstractions, but most object-oriented languages do (such as
C#, VB, and Java). An abstraction, typically an interface or abstract base class, defines a
contract for the methods and properties that an implementer MUST provide. Classes that
depend on an abstraction know they can count on those methods and properties to be present,
regardless of which concrete implementation is actually passed in at run-time. If you haven’t
coded using abstractions before, you’re missing out on a very powerful technique.

Knowing that our dialog box needs a list of layers, let’s define the ILayerProvider interface,
along with a GetLayers() function. Note that an interface does not contain an actual
implementation of how to get layers! It merely defines the contract that implementers of this
interface must supply.

 public interface ILayerProvider

 {

 IList<string> GetLayers();

 }

Sample 32 Interfaces define a contract

Now, we can have the form require an ILayerProvider in its constructor, which will deal with
retrieving layers. The form will then display the layers retrieved by the ILayerProvider object.

Page 28

 public partial class LayerSelectorClean : Form

 {

 ILayerProvider _layerProvider;

 public LayerSelectorClean(ILayerProvider layerProvider)

 {

 InitializeComponent();

 _layerProvider = layerProvider;

 }

 private void LayerSelectorClean_Load(object sender, EventArgs e)

 {

 Layers.DataSource = _layerProvider.GetLayers();

 }

 public string SelectedLayer

 {

 get

 {

 return (string)Layers.SelectedItem;

 }

 }

 }

Sample 33 Injecting dependencies into the form

Note how clean this is. There’s hardly anything to it! This class has a very specific, limited focus.
It doesn’t know where the list of layers to display is coming from. It doesn’t know what the caller
is going to do with the selected layer. It simply presents items to the user for selection.

I also added a read-only property, SelectedLayer, which returns the SelectedItem property of
the Layers ListBox. While the caller could try and access the form.Layers.SelectedItem
property, that implies that the caller knows more about the implementation of this form than it
really should—namely that I used a ListBox on the form (named Layers), and that the selected
value is accessible via the ListBox’s SelectedItem property. What if I change from a ListBox to
some other control for the user to pick from, which doesn’t have a “SelectedItem” property?
Should the caller have to change too? If we properly encapsulate (hide) the details of our forms,
we should not necessarily have to change the calling code just because the way we
implemented the form might change.

With this done, we need to provide an implementation of ILayerProvider. A class that
implements an abstraction is called a concrete class. Here’s a simple “in memory” layer provider
that generates a preset list of layers.

 class InMemoryLayerProvider : ILayerProvider

 {

 public IList<string> GetLayers()

 {

 return new List<string>

 {

 "C-ALGN-ROAD-BRNG",

 "C-ALGN-ROAD-CURV",

 "C-ALGN-SSWR-GEOM",

 "C-ALGN-SSWR-TEXT"

 };

 }

Page 29

 }

Sample 34 Implementation of ILayerProvider

In the sample code for this course, I’ve also included an AutocadLayerProvider which queries
the current drawing for its list of layers, which is basically the code from Sample 31’s Load
function, relocated to a new class. Now, I can pass any implementation of ILayerProvider to the
form, which will happily display whatever layers the provider knows how to access!

In Sample 35, I’ve provided two commands demonstrating use of the exact same form, but
supplying different ILayerProvider implementations. The main point is that I now have a form
that can work with any potential data source (I just need to write new ILayerProvider
implementations). The form is also freed from the burden of needing to know what the caller
wants to do with the user’s selection.

 [CommandMethod("SETLAYER2")]

 public void SetLayer2()

 {

 var form = new LayerSelectorClean(new InMemoryLayerProvider());

 if(form.ShowDialog() == DialogResult.OK)

 {

 SetCurrentLayer(form.SelectedLayer);

 }

 }

 [CommandMethod("SETLAYER3")]

 public void SetLayer3()

 {

 var form = new LayerSelectorClean(new ActiveDrawingLayerProvider());

 if(form.ShowDialog() == DialogResult.OK)

 {

 SetCurrentLayer(form.SelectedLayer);

 }

 }

Sample 35 Injecting ILayerProvider implementations into the LayerSelector form

The sample code for this class includes the SetCurrentLayer function which I excluded here for
brevity.

Summary
There is much more I could and want to say about writing clean code. I hope that the things I’ve
shared here will get you thinking about how you can improve your code. Keep in mind that clean
code doesn’t just happen—even for the “experts.” It’s a continual process and effort to make
your code better with each iteration. You can get better with practice.

The most important thing I leave you with is probably the Recommended Reading List below.
I’ve read ALL of these books cover to cover, some a few times. Each has helped me become a
better programmer, and I’m certain they will help you as well.

Page 30

Recommended Reading List
This class would not have been possible without me having written a LOT of bad code over the
last 20 years. While I’m not necessarily proud of that fact, I have taken responsibility for it and
realized that I can learn to write better, cleaner code. This desire has led me to many important
books that have helped me improve. Below are some of the more notable books which have
helped me on my path.

Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin
Working Effectively with Legacy Code, Michael C. Feathers
Dependency Injection in .NET, Mark Seeman
Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, et al.
The Pragmatic Programmer: From Journeyman to Master, Andy Hunt
Refactoring: Improving the Design of Existing Code, Martin Fowler
Code Complete, Steve McConnell
Head First Design Patterns, Eric Freeman
The Art of Unit Testing: With Examples in .NET, Roy Osherove

If you’re interested in further readings, or have any questions concerning this course, please
feel free to reach out to me via email: ben@leadensky.com. I’m more than happy to help!

mailto:ben@leadensky.com

