

Page 1

IM469414

Drawing Automation with API and New iLogic
Snippets in Inventor 2021
Sergio Duran
Manufacturing Technical Consultant
sduran@advconsulting.co

Description

Autodesk added more iLogic snippets in the latest version of Inventor software to make drawing
automation easier. This class will teach you how to prepare 3D models to easily automate the
creation of drawings. Learn how to use the new iLogic snippets to automate different annotations
such as dimensions, leaders, balloons, and more. In addition, you will discover when you should
go beyond drawing automation capabilities with iLogic and start using the Inventor API in this
process. Finally, you will identify the right approach to automate your Inventor drawings.

Speaker(s)

Sergio Duran is a mechanical engineer and an Autodesk Certified Instructor with more than 12
years of experience working with Autodesk Manufacturing Solutions. Speaker at Autodesk
University events (Las Vegas, Mexico City and the online version). Previously, he worked for two
Autodesk authorized resellers and training centers as an applications specialist. Extensive
experience and knowledge in CAD, design automation, simulation (CAE), visualization as well as
product data management (PDM). Proven success in training students and clients on CAD, CAE
and PDM applications. Sergio currently works as an independent consultant providing
professional consulting, implementation, training, and support services. He assesses business
issues and assists clients in design solutions, optimization and efficient workflows. Additionally,
he teaches Autodesk Inventor and AutoCAD courses at Sheridan College.

Learning Objectives

¶ Learn how to prepare a 3D model before automating a 2D drawing.

¶ Discover the new iLogic snippets to automate 2D drawings in Inventor 2021.

¶ Discover the differences between iLogic and Inventor API when automating 2D
drawings.

¶ Learn how to determine the best approach to automate your drawings.

mailto:sduran@advconsulting.co

Page 2

TABLE OF CONTENTS

Introduction.. 3

3D Model Preparation .. 5

Prepare the model to automate drawing views ... 5

Prepare the model to automate annotations... 6

Working with Attributes for iLogic rules ... 7

Working with Attributes for Inventor API .. 8

Working with Workfeatures... 11

Considerations to automate annotations ... 13

View Orientation and wireframe model .. 13

Understanding Geometry Intents ... 17

New iLogic Snippets to automate 2D drawings in Inventor 2021... 21

Differences between iLogic and Inventor API when automating 2D drawing 26

Drawing Automation process using the Inventor API .. 31

Important concepts and API objects for drawing automation .. 41

Best approach to automate your drawings .. 44

Resources ... 46

Page 3

Introduction

In a project, one of the most important deliverables is a 2D drawing. It can be send and shared
using different output options such as hard-copy and digital formats (DWG, PDF, DWF, etc.). To
achieve this result, you need to go through multiple steps to create a 2D drawing and it can be
done manually by a user, programmatically using codes or with a combination of manual inputs
and automation. The last option is very common where codes complete some repetitive tasks and
the user finishes what is missing in the the drawing.

Next, you can see the drawing workflow. These steps can be accomplished either using the user
or programming interface.

Drawing Workflow

1. Drawing Standards and Styles
2. Drawing Resources (Definitions)

o Sheet Formats
o Borders
o Title Blocks
o AutoCAD Blocks (only for Inventor drawing files with .dwg extension)

3. Drawing Setup
o Create sheets

¶ Use sheet formats with specified caharacteristics and standard elements:
o Sheet Size
o Border and title block
o Set of standard drawing views
o Fit Views to Sheet (new checkbox in Inventor 2021). This setting

resizes and positions the drawing views to fit them inside the sheet.
The drawing views use a similar size and position of the source
views when the sheet format was created.

o Other settings such as edge display, flat patterns for sheet metal
parts and Parts List for assemblies are saved in the sheet format
since Inventor 2021.

¶ Create a blank sheet
o Add or change a border and title block from the drawing resources

4. Referenced models
5. Drawing Views
6. Annotations
7. Output

o Print
o Export or save as PDF, DWG, DXF, DWF and image files
o Reports

All these steps can be automate it, but you need to evaluate whether it makes sense or not. In
some cases, automating some of them may be a waste of time and there are scenarios where is
unrealistic to complete entire process programmatically. This decision depends on different
factors.

Page 4

The first two stages of the process are very easy to automate since they usually follow common
company and international standards. In fact, most of the companies will not even think of
automating them since the drawing templates, standard and styles are setup in advance and
shared to all Inventor users in the company.

Drawing standards and styles are usually standardized, created in advance by a CAD manager
or Inventor user, and placed in a shared location. If this is done properly, the drawing automation
process can skip the creation of the drawing standards and styles.

Likewise, a standard drawing template with all the company drawing resources (sheet formats,
borders, title blocks, sketch symbols and AutoCAD blocks) created and placed in a shared
location will save time in the drawing automation process since the definitions of the different
drawing resources is not necessary. Adding the drawing resources in the sheet is part of the third
stage of the drawing workflow.

The next two steps in the drawing process are simple and can be automated easily. Working with
sheets, adding drawing resources and managing the referenced models (set, get or replace) is a
common procedure for most of the projects. You can reuse lines of codes to save time.

Drawing views and annotations are the most difficult phases of the automation process and
require careful planning. They depend on the models to be used and the type of drawing to be
created. These two stages will determine if the drawing automation can be completed with a single
button/click. Complex scenarios are unlikely to be automated entirely, but you can accomplish
part of this stage porgramatically and the rest with some user inputs.

The last step in the workflows is the output. It is the way to present the 2D drawing printed on
paper or using a digital format. Regardless of the output option you want to use, this step is usually
common and standard for all company projects, then it can be automated. It is recommended to
use either external iLogic rules or even better add-ins.

Clearly, the drawing automation is not a simple process. It requires Inventor knowledge, some
programming experience, and understanding of the drawing workflow, referenced models and the
outcome. For example, catalog-based models and simple drawings like approval drawings
(drawing for quotes) are doable and can be completed programmatically without any user
interaction. However, a more complex scenario like a manufacturing drawing of a customer-based
model may be unachievable to create with a single click.

Page 5

3D Model Preparation

In the drawing automation process, drawing views and annotations require careful planning to
successfully automate these two steps.

A drawing view references a model and annotations like dimensions, leader notes, balloons and
more are attached to drawing entities such as drawing curves, centerlines and centermarks.
Drawing curves are the representation of 3D model faces and edges.

Prepare the model to automate drawing views

If the automation is using an existing drawing where the drawing views are already placed and
the code only repositions and resizes with the scale factor, they do not need any change of the
3D model views. iLogic snippets allow to reposition and resize drawing views. However, if the
drawing automation requires adding views, it is important to be familiar with the model and set 3D
model views properly by using the ViewCube.

In your 3D model, right click on the ViewCube > Set Current View as > Front

Image 1 ï Set the Front view in the 3D model

The iLogic library does not have any snippet to add drawing views, however Inventor API has the
collection object DrawingViews which allows the user to create the drawing views
programmatically. Next, the image shows the drawing views that can be added using Inventor
API and it highlights the most frequently used views: base, projetected, section, detail and
auxiliary.

Page 6

Image 2 ï Methods to add drawing views using Inventor API

The orientation of the 3D model is used in the DrawingView method to create drawing views:

DrawingViews.AddBaseView(Model As Document, Position As Point2d, Scale As Double,
ViewOrientation As ViewOrientationTypeEnum, ViewStyle As DrawingViewStyleEnum,
[ModelViewName] As String, [ArbitraryCamera] As Variant, [AdditionalOptions] As Variant) As
DrawingView

The orientation of the model within the drawing view can use any value from the list
ViewOrientationTypeEnum. For instance, the right view from your 3D model (Right view in the
ViewCube) is placed using the value kRightViewOrientation or 10755.

Prepare the model to automate annotations

There are two ways to place annotations:

1. Specifying a position on the sheet by using 2D coordinates (x, y). Notes and Parts Lists

are drawing annotations that only need coordinates.

2. Using drawing entities to attach the annotation and a point on the sheet to place the

annotation. Dimensions and Leader Notes require these two conditions. The drawing
entities where annotations are attach to may have relationships with the 3D model.

Page 7

When an annotation is attach to a drawing curve, the drawing curve is the representation of a
model face or edge. Additionally, these type of annotations can also be attached to centermarks
and centerlines. These two objects represents either cylindrical geometry (holes, revolved and
extruded rounded shapes) or workfeatures.

The stage of annotations in the drawing automation process requires some preparation in the 3D
model to easily identify where the annotations will be attach.

Working with Attributes for iLogic rules

Define attributes for faces and edges to identify the drawing curves that represent them. If
iLogic snippets will be used in the drawing automation, you should use the feature Assign
Name that let you assign name to faces and edges.

In the Part environment, Right click on a face or edge > Assign Name > enter a meaningful
name.

Image 3 ï Assign Name to a part face

When the first attribute is defined, the iLogic browser adds a new tab named Geometry next
to the Rules tab. All entities with an assigned name (faces, edges and vertices) are displayed
under a folder named Geometry (see image below).

Page 8

Image 4 ï Geometry tab in the iLogic browser

Right click menus over the labels, browser, faces and edges allow to control label visibility
and manage the names (edit, rename and delete).

Watch this demo to learn about assigning names to faces, edges and vertices.

https://autode.sk/31Axr2N

Working with Attributes for Inventor API

Letôs take a look at the Attribute definition and its structure in the Inventor Object Model before
describing three methods to create attributes to be used with Inventor API.

An attribute allows to associate information or add metadata to Inventor entities that support
attributes. The attribute functionality was only available through the API before Inventor 2020.
Now, attributes can be defined using the user and programming interface, although they have
some limitations when being defined with the new feature Assign Name of the user interface.
An attribute does not define anything in the 3D model. It is useful to be used as a tool for
different purposes. One of them is to find geometry (e.g. faces and edges) programmatically.
Occurrences, features, sketches, parameters and more 3D model entities have names by
default, but faces and edges do not have names. Attribute definition is an extra step to achieve
the result of naming faces and edges.

When faces and edges have names, they can be found, referenced and used
programmatically. You can name faces and edges to place assembly constraints, place
drawing annotations and more.

https://autode.sk/31Axr2N

Page 9

In the Inventor API Object Model, these are the attribute objects and its hierarchy (see image
below).

Image 5 ï Object model for Attributes

The required structure to work with Attributes is very similar to the object model for iProperties.
If you have worked with iProperties using the Inventor API object model, then you will easily
understand how to use attributes.

Image 6 ï Comparison of object model for Attributes and iProperties

While Property Sets are under a Document, the attribute sets are under an Inventor entity that
supports attributes. For instance, faces and edges are objects that support attributes. The
Attribute Sets object contains all the attribute set objects. An attribute set contains attributes.
An attribute has a name and a value.

If Inventor API is used for the automation of annotations, then you can use one of these three
options to define the attributes:

Page 10

1. Create attributes from scratch using a code

Next, there is a code that creates an AttributeSet named ñGeneralò, an Attribute named
ñNameò and assigns a value ñTop Faceò

Image 7 ï Face with attribute

Creating an attribute: create a box (draw a rectangle and extrude it upwards). The end
face is the top face. Copy and paste this code inside an iLogic rule. Run the rule.

Note: This is a VB.NET code that also works when creating an add-in. You should only
replace ñThisApplicationò with ñg_inventorApplicationò

'Get the part doc ument; use ñg_inventorApplication ò instead of

ñThisApplicationò to be use in an add- in

Dim oDoc As PartDocument = ThisApplication . ActiveDocument

'Get the first extrusion

Dim oExt As ExtrudeFeature = oDoc. ComponentDefinition . Features (1)

'Get the end faces (There is only one)

Dim oEndFaces As Faces = oExt . EndFaces

Dim oEndFace As Face = oEndFaces (1)

'Define an attribute set

Dim oAttSet As AttributeSet = oEndFace . AttributeSets . Add("General")

'Define an attribute and assigns a value

Dim oAtt As Attribute = oAt tSet . Add("Name" , kStringType , "Top Face")

If you want to know more about attributes, read Introduction to Attributes from the
Autodesk blog Mod the Machine.

https://modthemachine.typepad.com/my_weblog/2009/07/introduction-to-attributes.html

https://modthemachine.typepad.com/my_weblog/2009/07/introduction-to-attributes.html

Page 11

2. Use the Assign Name command in the context menu

This method was explained previously. Right click on faces and edges to assign names.

Inventor always uses the same AttributeSet name and Attribute name when this method
is used. For all assigned names of faces and edges, the AttributeSet name is
iLogicEntityNameSet and the Attribute name is iLogicEntityName. These are the two
default names to be used when searching for attributes.

3. Use a free Add-In provided by Autodesk and Brian Ekins to manage attributes.

You can install an add-in to manage the attributes to be used in the Inventor API. You can
download it from the Autodesk blog Mod the Machine

https://modthemachine.typepad.com/my_weblog/2015/08/attribute-helper-update.html

This add-in named the Attribute Helper was created by Brian Ekins the original designer
of the Autodesk Inventor® programming interface (API). In the previous link, the latest
version found is ñ2.4ò. Brian released a newer version on his website. The enhanced add-
in is named Nifty Attributes version 3.0. You can read the instructions and download it
from this link:

https://ekinssolutions.com/nifty_attributes/

Watch this demo to learn how create attributes using these three methods:

https://autode.sk/37xyd4p

Working with Workfeatures

Workfeatures is another way to attach annotations with information coming from the 3D model.
Create workfeatures (work planes, work axes and work points) in locations of your model that
you can get from your drawing views. You can also use the origin workfeatures in your drawing
if they are located at points that you can use to place annotations. Get strategic points from
your model to attach annotations in the drawing by using origin and user workfeatures.

Sometimes the plan to automate the annotations is a process going back and forth between
the 3D and 2D environments. This means that you may have the set of drawing views already
placed in the 2D drawing, think of the annotations you want to place, then go back to your
model and check if you can use existing workfeatures or need to create new ones.

The three workfeatures Work Planes, Work Axes and Work Points can be used to place
annotations, however, Work Points are more convenient since they are easier to use and are
very handy.

https://modthemachine.typepad.com/my_weblog/2015/08/attribute-helper-update.html
https://ekinssolutions.com/nifty_attributes/
https://autode.sk/37xyd4p

Page 12

Image 8 ï Creation of Work Points

In a coming section of this handout, the use of workfeatures for annotations will be described.

While iLogic snippets can directly work with workfeatures when defining the GeometryIntent,
Inventor API requires the conversion of workfeatures into centermarks or centerlines and then
declare the GeometryIntent to be used for annotations. GeometryIntent is also an object and
concept that will be explained later.

In the drawing environment, Work Points will always be converted into centermaks. A Work
Axis can be either a centermark when the axis is normal to the model orientation in the drawing
view or a centerline when the axis is parallel to the model orientation in the drawing view. You
can only use a Work Plane when it is displayed as a line in the 2D view and is converted into
a centerline. Working with centerlines to attach dimensions is doable but it may require to
specify either the start point, end point or any other point that works as the intent to attach the
dimension. This is the reason why working with work points is easier, faster and handier.

Renaming work features is one of the best practices when using them to automate
annotations. The new iLogic snippets in Inventor 2021 use the work feature name in the model
when declaring the geometry intent that is used to create the annotation.

Geometry Intent object

Dim namedGeometry1 = VIEW. GetIntent ("entityName")

entityName: name of the model geometry (face, edge, vertex or workfeature)

Page 13

Inventor API can use either the workfeature name or a number that indicates the index of the
workfeature in the 3D model browser. Rename the workfeatures or sort them in the model
browser before you use them in the codes to automate the annotations. Next, you can see
the API property to return a Work Point from the collection object WorkPoints. You can enter
either the number that specifies the work point to return from the work points in the 3D model
browser or its name.

WorkPoints.Item(Index As Variant) As WorkPoint

Index Variant Input Variant value that specifies the object to return. This can be a numeric
value indicating the index of the item in the collection or it can be a string indicating the work
point name.

Considerations to automate annotations

View Orientation and wireframe model

When you place a drawing view, some model edges are converted into drawing curves while
others disappeared. This beahavior depends on the orientation of the model used in the 2D
drawing view and the display style. The Inventor drawing environment uses a 3D wireframe model
and project it into a 2D sheet space. Letôs take a look at the following example. This 3D model is
a simple shape with a fillet and a hole. According to the view orientation of the 3D model, the front
view is the one where the counterbore hole was placed. In the front view of the 2D drawing, the
right vertical edge of the front view will be displayed, but the rear vertical edge will disappear since
these two edges are collinear and the rear edge is behind the front edge.

Image 9 ï 3D model

By default, Inventor uses a 2D view orientation in the drawing environment. Therefore, the user
does not see what happens behind the drawing. With this view orientation, the user cannot see
the wireframe model behind the sheet, then may not know how Inventor displays the 3D model in
a 2D drawing.

Page 14

Image 10 ï 2D Drawing

Inventor uses a 3D wireframe model that only has the required model edges to display the drawing
curves of a drawing view. In the next image, all the rear edges of the 3D model (edges of the back
face) disappeared in the 2D front view (view on the left in the sheet that uses the projection of the
top wireframe). The reard edges are not needed since they are collinear in an orientation normal
to the front view of the model. Inventor only needs the edges of the front view and two circular
edges from the counterbore hole to properly display the drawing curves of the drawing view.

Image 11 ï 2D Drawing with an isometric camera orientation

Page 15

In the previous image, the drawing view style displays hidden lines. The side view (view in the
middle of the sheet created with the projection of the top right wireframe) displays the hole with
hidden lines (cyan lines). If the drawing view style is changed to Hidden Line Removed, the
wireframe removes these hidden lines and they are not displayed.

Image 12 ï Isometric view orientation displaying drawing views with hidde lines removed

An Inventor 2D drawings view is just the projection of a 3D wireframe model on a sheet.

It is important to understand how Inventor creates the drawing, because some edges may be
displayed in some drawing views but disappear or are hidden in others. In this example, if you
need to attach an annotation to the external circular edge of the counterbore hole, you can only
do it in the section view because it is not displayed in the side view regardless of the drawing view
style (Hidden Line and Hidden Line Removed).

You should consider how some edges are used in some drawing views and are not displayed in
others when creating attributes for edges and faces.

Use the following code to change the drawing view orientation. This code only sets two camera
orientations: Front and Isometric. It uses VB.NET language, then it can be used in an iLogic rule
or an add-in.

Page 16

'***This code changes document view by using a camera orientation

'[Gets or creates a multi - value parameter with two t ext values (Front and

Isometric)

Dim oUserParams As UserParameters =

ThisApplication . ActiveDocument . Parameters . UserParameters

Dim oCameraParam As Inventor . Parameter

Dim oCamList (1) As String

oCamList (0) = """Front"""

oCamList (1) = """Isometric"""

Try

 oCameraParam = oUserParams . Item ("CameraOrientation")

Catch

 oCameraParam = oUserParams . AddByValue ("CameraOrientation" , "" ,

kTextUnits)

Finally

 oCameraParam . ExpressionList . SetExpressionList (oCamList)

End Try

']

'Gets the active view of the document within t he current window

Dim oDocView As View = ThisApplication . ActiveView

Dim oCamera As Camera = oDocView . Camera

'Sets the type of orientation of the camera (Front or Iso)

If oCameraParam . Value = "Front"

 oCamera. ViewOrientationType =

ViewOrientationTypeEnum. kFrontViewOrientation

Else 'Isometric

 oCamera. ViewOrientationType =

ViewOrientationTypeEnum. kIsoTopRightViewOrientation

End If

'Apply the current camera definition to the view

oCamera. ApplyWithoutTransition

The first part of the code only gets or creates a multi-value parameter with two options: Front and
Isometric. The second part of the code changes the view orientation and is pretty straightforward.
Get the camera of the current view, define the desired view orientation and then apply the method
to change the orientation of the view.

Watch this demo to understand how Inventor creates a 2D drawing using the wireframe model
https://autode.sk/37yRWAA

https://autode.sk/37yRWAA

Page 17

Understanding Geometry Intents

A Geometry Intent is an Inventor API object with two components, the geometry and the intent.
The geometry is the drawing geometry being used to attach the annotation and the intent is the
precise point to attach it. The geometry is mandatory while the intent depends on the case and
sometimes there is no need to define an intent. A good example is when using centermarks. A
centermark does not need an intent, since the definition of the geometry intent with the centermark
is enough. However, a centerline has a start point, end point or any point using a relative value
(from 0 to 1), then the geometry is the centerline and the intent may be a specific point to attach
the annotation precisely.

When using Inventor API, the geometry can be: drawing curve, sketch entities from a sheet
sketch, drawing dimension, centerline and centermark. The three highlighted drawing entities
are more common options.

In the following image, the 3D model on the left has two work points to be used in the annotations
automation. The drawing on the right displays a linear dimension 85 mm. This dimension is
attached to two centermarks that were created from the 3D model work points. The centermarks
are highlighted on the right (they were enlarged for this example).

Image 13 ï Model with work points and a dimension attached to centermarks

The next Inventor API code to place this linear dimension demonstrates how the centermarks
were created from work points (Centermarks.AddByWorkFeature). Then, the geometry intents
were created from the centermarks, but they only needed the geometry and there is no intent.

Page 18

Image 14 ï Code to create centermarks and geometry intents to place a linear dimension

In the following method, the intent is an optional argument

Sheet.CreateGeometryIntent(Geometry As Object, [Intent] As Variant) As GeometryIntent

Intent: Intent point on the input geometry. These are the different intent options where the
highlighted intents are the most frequently used options.

¶ PointIntentEnum value: kMidPointIntent, kEndPointIntent, and more.

¶ A geometry if the intent is the intersection of two geometries.

¶ Point2d object that specifies a sheet point on the geometry.

¶ Double value (0 to 1) indicating the parameter on the input curve geometry.

In the next example, the intent point is required to place the annotation precisely. The bottom face
of the 3D model is displayed as a drawing curve. The drawing curve is obtained by finding the
bottom face that represents it. The geometry intent is created using this drawing curve as the
geometry and an intent point. The intent used in this case is a double value. In this scenario more
intent types can be used, but this example only demonstrates the double value which is an intent
type named parameter intent (kParameterIntent). The image shows three positions of the same
leader note using 0.25, 0.5 and 0.75 in the intent argument. The left corner is the double value
zero and the right corner is one. Any value from zero to one goes from left to right on this drawing
curve.

Page 19

Image 15 ï Leader notes placed on the lower drawing curve of a drawing view

Below, the image displays the last lines of the API code used to placed the leader note. Notice
how the intent 0.75 which is a parameter intent type is used to place the leader precisely near the
right corner of the edge

Image 16 ï Creation of a geometry intent using a drawing curve and double value to place a leader note

Now, the Geometry Intent can be used in iLogic with some limitations.

The geometry can only use a face, edge, vertex or workfeature from the 3D model.

Dim namedGeometry1 = VIEW. GetIntent ("entityName")

entityName: name of the model geometry (face, edge, vertex or workfeature)

Page 20

The intent only works with the PointIntentEnum type.

Image 17 ï Optional intent in the iLogic DrawingView.GetIntent method

Image 18 ï Intellisense to select one of the PointIntent values

If you need to use another type of intent, then you should use the GeometryIntent object of the
Inventor API.

The definition of the GeometryIntent objects are different in the Inventor API and iLogic libraries.
When you create a GeometryIntent using Inventor API, this is a method of the sheet object. The
geometry object used in this method (e.g. a drawing curve or centermark) was defined by using
the drawing view object as shown in the two previous API codes. The iLogic is a drawing view
method as shown in the image above.

Page 21

New iLogic Snippets to automate 2D drawings in Inventor 2021

Inventor 2021 added new snippets to add annotations automatically. iLogic snippets allow to add
the following dimensions: linear, angles, radius and diameters. They also let you automate the
creation of centermarks, centerlines, centered pattern, leader notes, hole notes and balloons.

Image 19 ï New Inventor 2021 iLogic Snippets for annotations automation

When you click on a new iLogic snippet to automatically place an annotation, you only need to
replace values and arguments. If you click on the Linear Dimension snippet, thi is what you get.

Dim Sheet_1 = ThisDrawing . Sheets . ItemByName ("Sheet: 1")

Dim VIEW1 = Sheet_1 . DrawingViews . ItemByName ("VIEW1")

Dim namedGeometry1 = VIEW1. GetIntent ("NamedGeometry1")

Dim genDims = Sheet_1 . DrawingDimensions . GeneralDimensions

Dim linDim1 = genDims . AddLinear ("Dimension 1" , VIEW1. SheetPoint (0.5, - 0.1),

namedGeometry1)

First, replace sheet and drawing view names in the first two lines if you have renamed them.
Second, replace the ñNamedGeometry1ò with your named face or edge. Dimensions can de
added with one or two GeometryIntents. For example, if you need to place a dimension between
two geometry entities (e.g. from edge to edge), then copy the line Dim namedGeometry1 =
VIEW1.GetIntent("NamedGeometry1") and enter a second named edge for the object in the
argument, Dim namedGeometry2 = VIEW1.GetIntent("NamedGeometry2"). The fourth line
gets the object general drawing dimensions, there is no need to make any change in this line.
Finally, replace the values in the last line to place the linear dimension. The important values are
the point to place the linear dimension and the GeometryIntent. The point values are any value
from 0 to 1, where 0 is the bottom left corner and 1 is the top right corner of the drawing view. The
GeometryIntent is the one you declared in the third line.

The other drawing annotation snippets follow a similar structure: get the sheet, get the drawing
view, declare the geometry intent using named faces or edges, get the object general dimensions,

Page 22

and finally create the annotation. Therefore, you delete some duplicated lines if you are creating
more than one annotation. A sheet, a drawing view and the object general dimensions only need
to be once in the code.

The Geometry Intents can be created multiple times since they are related to the drawing views.
Letôs take a look at the next example:

A face with a name ñRightFaceò requires different geometry intents if it will be used in multiple
drawing views. A geometry intent object for the top view and another object for the front view.

Dim RightFace GI _TV = TopView . GetIntent ("Rig htFace")

Dim RightFace GI_FV = Front View . GetIntent ("RightFace")

It also applies for workfeatures. If a Work Point needs to be used in two drawing views, it requires
two geometry intents.

Dim WPo3_FV = FrontView . GetIntent ("TopRight_FrontWPo3")

Dim WPo3_SV = SideView . GetIntent ("TopRight_FrontWPo3")

When automating one or multiple annotations, you should use the second snippet from the new
Drawing category in Inventor 2021 named Manage Items. These two lines in your code
automatically remove annotations when necessary.

Image 20 ï Snippet Manage Items in the Drawing category

When you click on the Manage Items, it adds the following lines:

ThisDrawing . BeginManage ()

 ' Statements to add dimensions, annotations, etc. go here.

ThisDrawing . EndManage()

Delete the comment and add your annotation automation lines between the two magenta/purple
lines ThisDrawing.BeginManage and ThisDrawing.EndManage. Annotations inside this block
will be clean or deleted when not required. You only use methods to add annotations and there
is not need to call methods to delete them since they will be deleted automatically when they are
not needed.

Page 23

Next, there is an example that demonstrates the annotations automation in the 2D drawing of the
block with the counterbore previously displayed. The 3D model has named faces and edges.

Image 21 ï 3D part with named edges and faces

Below, the 2D drawing displays general dimensions, centerlines, a centermark and a hole note
that were placed automatically with the new iLogic snippets.

Image 22 ï Automated annotations in a 2D drawing

Page 24

Watch these demos to learn about automating annotations with iLogic
https://autode.sk/3jjHT4J
https://autode.sk/3krVY1q
https://autode.sk/2FXMrjO

This is the code that placed the annotations in the 2D Drawing.

https://autode.sk/3jjHT4J
https://autode.sk/3jjHT4J
https://autode.sk/3krVY1q
https://autode.sk/2FXMrjO

