

Page 1

FDC226894

Revit Data on Forge – How can Design Automation for
Revit API Help Me?
Sasha Crotty
Autodesk

Diane Christoforo
Ryan Duell
Autodesk

Description

The Forge Design Automation API for Revit allows you to build web applications that can create,
read, and modify Revit models in the cloud. No longer is access to Revit data trapped on the
desktop. Learn how Forge can help you manage and create Revit data in cloud-native applications.
We'll review the different kinds of apps you will be able to build using the Design Automation API to
solve your company's challenges as well as demonstrate some sample applications using the
service.

Speaker(s)

Sasha Crotty joined Autodesk, Inc., in 2005 as a developer for Revit Structure software. She went
on to lead the Revit Structure Development Team before switching gears into product management.
As the Revit Platform Services product manager, she is responsible for the direction and evolution of
Revit's multi-disciplinary tools, Collaboration for Revit, performance, and the Revit API. Sasha holds
a BA in Architecture and a BS in Electrical Engineering and Computer Science from the University of
California, Berkeley, as well as an MBA from Boston University. In her spare time Sasha enjoys
growing miniature orchids and traveling around the world.

Diane Christoforo has been a software developer at Autodesk for thirteen years. She has worked
on a variety of aspects of Autodesk Revit, including linked files, Autodesk Revit eTransmit, the API,
shared coordinates, and Forge Design Automation for Revit. She graduated with a degree in
computer science from MIT in 2005. She square dances in her spare time.

Ryan Duell started his career at an architectural firm in Boston Massachusetts, working on a variety
of project teams and functioning in the BIM Manager role. He joined Autodesk in 2008 as a member
of the product support organization. From there he transitioned into the development organization,

Learning Objectives

• Discover and understand ways to access and work with Revit data in the cloud

• Discover the kinds of problems that design automation can solve for your company

• Understand how the Design Automation API for Revit can help manage BIM data
challenges

• Learn how you can use these building blocks to automate your company's workflows

Page 2

currently functioning as a QA Analyst and scrum team Product Owner for Revit. He holds a degree
in design computing from Boston Architectural College. In his spare time, Ryan enjoys running and
playing both current and classic Nintendo games.

Page 3

In this handout, we wanted to help you understand how to create and use applications with
Design Automation. What follows is documentation which we wrote for our private beta
customers to help them get up and running. It's accurate as of October 2018 but the system is
subject to change and so the described API may not be final.

Design Automation Terminology

Terminology Description

appbundle
A package of binaries and supporting files which make your

Revit Addin application.

activity

An action which can be executed in Design Automation. You

create and post your own activities to run against

particular appbundles.

workitem

A request to execute an activity. The relationship between an

activity and workitem can be thought of as a “function

definition” and “function call”, respectively.

nickname

A way to map a Forge App Client Id to a customized string.

The nickname lets you create a friendly, easy-to-read, string

that can be used in place of the long Forge App Client Id.

alias A label to a specific version of an appbundle or activity.

Using Design Automation: Step by Step

1. Convert your Revit Addin

(If you don't have an existing addin, Appendix C has samples.)

2. Create a Forge App and get authenticated

3. Create a nickname for your Forge App

4. Publish your Design Automation appbundle

5. Publish your Design Automation activity

6. Post your Design Automation workitem

7. Appendix A: System Restrictions

https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/AppBundle.md
https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/Activity.md
https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/WorkItem.md
https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/Nickname.md
https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/Alias.md

Page 4

8. Appendix B: Handling Failures in Revit Appbundles

9. Appendix C: Code sample

1. Convert your Revit Addin

Applications run on Design Automation are very similar to normal Revit addins. The

primary difference is that there’s no UI in Design Automation. Because of this, your

addin will need to be written as an IExternalDBApplication rather than an

IExternalApplication or IExternalCommand.

Here are our recommended steps for converting an existing addin.

Start with a small subset of your code

We recommend you start with a simple operation as a proof of concept. Converting an

ExternalCommand can be a good starting point.

Referencing the DesignAutomationBridge DLL

We’ll provide a small library (currently called DesignAutomationBridge) that you will use

to interface with Design Automation. Add it as a dependency to your project. (Note: this

is not available while Revit Design Automation is in private beta.)

Convert your IExternalApplication or IExternalCommand to
IExternalDBApplication

You won't be adding any buttons or ribbon commands, since there won't be any UI

interaction.

You will need to implement OnStartup and OnShutdown. These functions will get

a ControlledApplication instead of a UIControlledApplication. The functions return

an ExternalDBApplicationResult object.
using Autodesk.Revit.ApplicationServices;
using Autodesk.Revit.DB;
using DesignAutomationFramework;
namespace DeleteWalls
{

[Autodesk.Revit.Attributes.Regeneration(Autodesk.Revit.Attributes.RegenerationOption.
Manual)]

[Autodesk.Revit.Attributes.Transaction(Autodesk.Revit.Attributes.TransactionMode.Manu
al)]
 public class DeleteWallsApp : IExternalDBApplication

Page 5

 {
 public ExternalDBApplicationResult
OnStartup(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 return ExternalDBApplicationResult.Succeeded;
 }

 public ExternalDBApplicationResult
OnShutdown(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 return ExternalDBApplicationResult.Succeeded;
 }

The .addin file can go in the normal place, but the addin type is DBApplication.

• Don't include references to RevitAPIUI! (Don't include WPF or Windows Forms or

anything either, but we do not currently have a way to check this.) There's no UI

interaction, so anything that pops up a dialog expecting user input will hang the system.

Add a reference to DesignAutomationBridge.dll and add an event handler for
DesignAutomationReady

Note: DesignAutomationBridge is not available while Design Automation for Revit is in

private beta. The “test your app on your local machine” instructions explain how to

mimic its behavior with desktop Revit.

Add a reference DesignAutomationBridge.dll. This is the library which Design Automation

will use to communicate with your addin.

For a C# project in Visual Studio, you can add a reference by opening the Solution

Explorer, finding your C# project, expanding its contents, right-clicking on the

References node and doing “Add Reference…”

In the Reference Manager dialog, use the “Browse…” button to browse to

DesignAutomationBridge.dll. Click “Add” and then “OK” to add the reference to your

project.

The DesignAutomationBridge defines an event DesignAutomationReadyEvent. Revit's engine

will raise this event when it's ready for you to run your addin. You should execute your

code inside the event handler.
 public class DeleteWallsApp : IExternalDBApplication
 {
 public ExternalDBApplicationResult
OnStartup(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 DesignAutomationBridge.DesignAutomationReadyEvent +=
HandleDesignAutomationReadyEvent;
 return ExternalDBApplicationResult.Succeeded;

Page 6

 }
 public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
 {
 e.Succeeded = true;
 DeleteAllWalls(e.DesignAutomationData);
 }

The event will give you a path DesignAutomationData.MainModelPath to the "main" model

indicated in the WorkItem's arguments. There is also a success/failure

argument DesignAutomationReadyEventArgs.Succeeded you should set; it will let the service

know whether potential failures happened in your code or elsewhere.

Any files you load or create should be put into the working directory. On the cloud your

write access is limited to the working directory and its children.

Handle failures encountered by Revit

A fundamental feature in Revit is how warnings and errors (collectively referred to as

"failures") are handled. Understand your options for handling failures in Revit and

implement a failure handling strategy in your application. We will cover failure handling

options in more detail in Appendix B.

Test your app on your local machine

For local debugging, there isn’t a DesignAutomationReady event to handle. However,

you can get similar behavior by watching for the ApplicationInitialized event.

Do not use this event on the cloud, because Design Automation for Revit continues

doing setup past the point at which ApplicationInitialized is raised. Locally it should

mimic the "run automatically" behavior. For example, in our DeleteWalls example, we

can do this:
 public class DeleteWallsApp : IExternalDBApplication
 {
 public ExternalDBApplicationResult
OnStartup(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 //Stop handling the event used by jobs on the cloud:
 //DesignAutomationBridge.DesignAutomationReadyEvent +=
HandleDesignAutomationReadyEvent;
 // And instead execute the code when desktop Revit is initialized.
 app.ApplicationInitialized += HandleApplicationInitializedEvent;
 return ExternalDBApplicationResult.Succeeded;
 }

 //public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
 //{
 // e.Succeeded = true;

Page 7

 // DeleteAllWalls(e.DesignAutomationData);
 //}

 public void HandleApplicationInitializedEvent(object sender,
Autodesk.Revit.DB.Events.ApplicationInitializedEventArgs e)
 {
 Autodesk.Revit.ApplicationServices.Application app = sender as
Autodesk.Revit.ApplicationServices.Application;
 // We don't need to provide the file
 DesignAutomationData data = new DesignAutomationData(app,
"/path/to/file.rvt");
 DeleteAllWalls(data);
 }

Additionally, we must provide the .addin file to Revit. We

added it to C:\ProgramData\Autodesk\Revit\Addins\2018\ (or 2019 if the target is Revit

2019) and changed <Assembly> to point to our DLL:
<Assembly>C:\test\DeleteWalls\DeleteWallsTest\bin\Debug\DeleteWalls.dll</Assembly>

This way, we can run locally without any UI intervention on Revit startup.

Note: Your application cannot use the network or write to any files outside of the

current working directory.

2. Create a Forge App and get authenticated

Design Automation runs on the Autodesk Forge platform, so you will need a Forge App

to use Design Automation.

Creating a Forge App

The first step to using Design Automation for Revit is to create a Forge app. Please

create a Forge app using instructions in the following

link: https://developer.autodesk.com/en/docs/oauth/v2/tutorials/create-app/

Authentication

Please refer to the following links for more details:

• https://developer.autodesk.com/en/docs/oauth/v2/reference/http/authenticate-POST/

• https://developer.autodesk.com/en/docs/oauth/v2/overview/field-guide/

You use the Client ID and Client Secret obtained above to authenticate your

application and obtain a two-legged access token. The details of the HTTP response is

given in the above link. Please learn about the access tokens and their validity.

Please use scope=code:all instead of scope=data:read to obtain a token. All Design

Automation for Revit APIs require this scope.

https://developer.autodesk.com/en/docs/oauth/v2/tutorials/create-app/
https://developer.autodesk.com/en/docs/oauth/v2/reference/http/authenticate-POST/
https://developer.autodesk.com/en/docs/oauth/v2/overview/field-guide/

Page 8

curl -v 'https://developer.api.autodesk.com/authentication/v1/authenticate'
 -X 'POST'
 -H 'Content-Type: application/x-www-form-urlencoded'
 -d 'client_id=YourForgeAppClientID'
 -d 'client_secret=YourForgeAppClientSecret'
 -d 'grant_type=client_credentials'
 -d 'scope=code:all'

The response body to this request contains the token that you shall use for all our APIs.

The response also contains the expiration time of the token.

Forge API Errors

These are the most common errors which our private beta customers have encountered:

Expired token
Status: 401 Unauthorized
Body: The token has expired or is invalid

This error can happen when the token attained to authenticate the Forge Application

has expired. Please obtain a fresh token and perform the original request once again.

Invalid scope
Status: 403 Forbidden
Body: Token does not have the privilege for this request.

This error can happen when wrong scope is provided while authenticating the Forge

Application. Please use scope=code:all to obtain a fresh token and perform the original

request once again.

Too Many Requests
Status: 429 Too Many Requests
Body: You reached Quota limit. Your total free Quota is 20 requests per minute.
Please try again soon.

This error can happen when more than allowed WorkItems are posted within a given

minute. The current quota limit is 20 WorkItems per minute.

3. Create a nickname for your Forge App

In Design automation, your Forge App account will be the owner of your app and activity.

A nickname is a way to map a Forge App ClientId to a customized string. A nickname lets

you create a friendly, easy-to-read string that can be used in place of the long Forge

App ClientId.

For example, your Forge App ClientId may be something hard to read such

as "YnhayiOjhgnsd&afh890ryehQW". If you create a new app “DeleteWallsApp” with an

alias “test”, you can reference this app

Page 9

by YnhayiOjhgnsd&afh890ryehQW.DeleteWallsApp+test. This is easier to read but still not

ideal.

However, by mapping this Forge App ClientId "YnhayiOjhgnsd&afh890ryehQW" to a

nickname of YourNickname, you can reference the app by

using YourNickname.DeleteWallsApp+test, more easily and nicely.

Creating a nickname
curl -X PATCH \
 https://developer.api.autodesk.com/da/us-east/v3/forgeapps/me \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -H 'Content-Type: application/json' \
 -d ' {"nickname": "YourNickName"}'

Note:

• LongStringAccessTokenObtainedDuringAuthentication is the access token returned by

an authentication request with the Forge App, you want to map to a nickname.

• If your Forge App doesn't have any data, you can map this Forge App to another

nickname, and the new nickname will overwrite the old one. Once your Forge app has

data, you cannot PATCH a nickname with your Forge app anymore. This is true, even if

you have not yet assigned a nickname for the app. The only way you can assign a

nickname for an app with data is by first calling [DELETE] /forgeapps/me. This will delete

any Design Automation app data associated with that app, including the nickname.

• If the nickname is already used by another user, the PATCH request will return 409

Conflict.

4. Publish your Design Automation appbundle

An appbundle is the package of binaries and supporting files which make your Revit

Addin application.

Appbundle Structure

Design Automation API for Revit expects your appbundle to be a zip file with certain

contents. Here is the zip file for a sample appbundle called DeleteWallsApp.zip.
DeleteWallsApp.zip
|-- DeleteWalls.bundle
| |-- PackageContents.xml
| |-- Contents
| | |-- DeleteWalls.dll
| | |-- DeleteWalls.addin

The top-level folder needs be named *.bundle. In *.bundle put a PackageContents.xml file

that contains the description of the appbundle and the relative path to its .addin file.
<?xml version="1.0" encoding="utf-8" ?>

Page 10

<ApplicationPackage>
 <Components Description="Delete Walls">
 <RuntimeRequirements OS="Win64"
 Platform="Revit"
 SeriesMin="R2018"
 SeriesMax="R2018" />
 <ComponentEntry AppName="DeleteWalls"
 Version="1.0.0"
 ModuleName="./Contents/DeleteWalls.addin"
 AppDescription="Deletes walls"
 LoadOnCommandInvocation="False"
 LoadOnRevitStartup="True" />
 </Components>
</ApplicationPackage>

Note: SeriesMin and SeriesMax both refer to Revit 2018 as R2018. As of October 2018,

Design Automation for Revit supports appbundles which run on Revit R2018 and R2019.

In the *.bundle\Contents folder put the addin file and the application DLL and its

dependencies.
<?xml version="1.0" encoding="utf-8"?>
<RevitAddIns>
 <AddIn Type="DBApplication">
 <Name>DeleteWalls</Name>
 <Assembly>.\DeleteWalls.dll</Assembly>
 <AddInId>d7fe1983-8f10-4983-98e2-c3cc332fc978</AddInId>
 <FullClassName>DeleteWalls.DeleteWallsApp</FullClassName>
 <Description>"Walls Deleter"</Description>
 <VendorId>Autodesk</VendorId>
 <VendorDescription>
 </VendorDescription>
 </AddIn>
</RevitAddIns>

Note: Type must be DBApplication. Design Automation for Revit doesn't support

applications that need Revit's UI functionality. Assembly must be a relative path to

the DLL.

Examples of the format for the *.bundle folder and PackageContent.xml file can been

found in the presentation on Autodesk Exchange Revit Apps here.

While PackageContents.xml from existing Autodesk Exchange Revit apps can be used

as-is, Design Automation for Revit only reads the RuntimeRequirements and

ComponentEntry blocks.

Publish an Appbundle

To publish your appbundle to Design Automation, you need to POST your appbundle's

identity and upload its package.

http://adndevblog.typepad.com/aec/ExchangeStorePublisher/3%20Autodesk%20Exchange%20Publish%20Revit%20Apps%20-%20Preparing%20Apps%20for%20the%20Store_Guidelines.pptx

Page 11

This example creates a new appbundle DeleteWallsApp by posting its identity. The target

engine of Revit running in Design Automation for this example appbundle is Revit 2018.
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/appbundles \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -H 'Content-Type: application/json' \
 -d '{
 "id": "DeleteWallsApp",
 "engine": "Autodesk.Revit+2018",
 "description": "Delete Walls appbundle based on Revit 2018"
}'

JSON Description

id The name given to the new appbundle.

engine
The engine running in Design Automation used by the appbundle.

Response

{
 "uploadParameters": {
 "endpointURL": "https://[myURL].com",
 "formData": {
 "key": "apps/Revit/DeleteWallsApp/1",
 "content-type": "application/octet-stream",
 "policy": "eyJleHBpcmF0aW9uIjoiMjAxOC... (truncated)",
 "success_action_status": "200",
 "success_action_redirect": null,
 "x-amz-signature": "6c68268e23ecb8452... (truncated)",
 "x-amz-credential": "ASIAQ2W... (truncated)",
 "x-amz-algorithm": "AWS4-HMAC-SHA256",
 "x-amz-date": "20180810... (truncated)",
 "x-amz-server-side-encryption": "AES256",
 "x-amz-security-token": "FQoGZXIvYXdzEPj//////////wEaDHavu...
(truncated)"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "description": "Delete Walls appbundle based on Revit 2018",
 "version": 1,
 "id": "YourNickname.DeleteWallsApp"

Page 12

}

JSON Description

endpointURL This is the URL to which you must upload your appbundle's ZIP file.

version The version number for the appbundle created by the POST request. For

new appbundles the returned version is always 1.

formData
The form data that needs to accompany your appbundle upload. The

formData expires after 3600seconds.

Upload appbundle zip file

Now you can upload your appbundle's ZIP to the signed URL returned by endpointURL:
curl -X POST \
 https://[myURL].com \
 -H 'Cache-Control: no-cache' \
 -F key=apps/Revit/DeleteWallsApp/1 \
 -F content-type=application/octet-stream \
 -F policy=eyJleHBpcmF0aW9uIjoiMjAxOC... (truncated) \
 -F success_action_status=200 \
 -F success_action_redirect= \
 -F x-amz-signature=6c68268e23ecb8452... (truncated) \
 -F x-amz-credential=ASIAQ2W... (truncated) \
 -F x-amz-algorithm=AWS4-HMAC-SHA256 \
 -F x-amz-date=20180810... (truncated) \
 -F x-amz-server-side-encryption=AES256 \
 -F 'x-amz-security-token=FQoGZXIvYXdzEPj//////////wEaDHavu... (truncated)' \
 -F 'file=@path/to/your/app/zip'

This is a curl example. You can use other tools, e.g. Postman, to do the uploading. Just

remember to include all the form-data from the create appbundle response in your

request.

Create an Alias for the Appbundle

The new version of your appbundle will be referenced via an alias.

Page 13

This example creates an alias with id test. This alias labels version 1 of

appbundle DeleteWallsApp.
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/appbundles/DeleteWallsApp/aliases
\
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "version": 1,
 "id": "test"
 }'

Notes:

• https://developer.api.autodesk.com/da/us-east/v3/appbundles/{appId}/aliases -

The {appId}(DeleteWallsApp) can be changed to use this example with other appbundles.

Update an Existing Appbundle

Create a New Version Number

To update an existing appbundle, you need to create a new version for the appbundle

and then upload the updated zip package.

If you still do the POST request for creating a new appbundle above, you will get a 409

Conflict error.

This POST creates a new version for the appbundle DeleteWallsApp.
curl -X POST \
 https://developer.api.autodesk.com/da/us-
east/v3/appbundles/DeleteWallsApp/versions\
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "id": null,
 "engine": "Autodesk.Revit+2018",
 "description": "Delete Walls appbundle based on Revit 2018 Update"
 }'

Notes:

• You can omit id in the request body. If you have id in the request body,

you must assign null for "id", otherwise you will get errors.

• https://developer.api.autodesk.com/da/us-east/v3/appbundles/{appId}/versions -

The {appId}(DeleteWallsApp) can be changed to use this example with other appbundles.

Response

{

Page 14

 "package": "https://[myURL].com/appbundles/xxxxxxxx",
 "engine": "Autodesk.Revit+2018",
 "description": "Delete Walls appbundle based on Revit 2018",
 "version": 2,
 "id": "YourNickname.DeleteWallsApp"
}

The response to the appbundle version post includes:

JSON Description

package
This is the signed URL to which you must upload your updated

appbundle package ZIP file.

version
The new version number for the appbundle created by the above POST

request.

Now you can upload the updated appbundle's zip file to the new signed URL returned

by package same as above.

Assign an existing alias to another version of an appbundle

You can update an existing alias to point to another version of an appbundle.

For example, after you post a new version of an appbundle, you may wish to assign an

existing alias to point to that new appbundle's version.

Here is an example where alias test labels version 1 of an appbundle DeleteWallsApp. A

new version 2 has been posted for this appbundle, but no alias labels version 2:

id alias version

DeleteWallsApp test 1

DeleteWallsApp 2

You can reassign alias test to label appbundle version 2:

id alias version

DeleteWallsApp 1

DeleteWallsApp test 2

To update the alias, you can either

• Delete the existing alias and recreate it with the version which you want to label.

Page 15

• Do a PATCH request:

curl -X PATCH \
https://developer.api.autodesk.com/da/us-
east/v3/appbundles/DeleteWallsApp/aliases/test \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
-d '{
 "version": 2

}'

Notes:

o https://developer.api.autodesk.com/da/us-

east/v3/appbundles/{appId}/aliases/{aliasId} - The {appId}(DeleteWallsApp)

and {aliasId}(test) can be changed to use this example with other appbundle ids

and alias ids.

o version - The version of the appbundle the alias will label.

Engine Version Aliases

Each appbundle POST request specifies the engine on which the application will run.

Different Design Automation engine version aliases correspond to different releases of

Revit. The specified engine needs to be compatible with your appbundle's

PackageContent.xml SeriesMin and SeriesMax.

The active engine version aliases are:

Engine Description JSON in appbundle post

Autodesk.Revit+2018 Revit 2018.3 "engine": "Autodesk.Revit+2018"

Autodesk.Revit+2019 Revit 2019.1 "engine": "Autodesk.Revit+2019"

5. Publish your Design Automation activity

An activity is an action which can be executed in Design Automation. You create and post your

own activities to run against target appbundles.

Create a New Activity

To create a new activity with the id DeleteWallsActivity, post this request:
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/activities \

Page 16

 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "id": "DeleteWallsActivity",
 "commandLine": ["$(engine.path)\\\\revitcoreconsole.exe /i
$(args[rvtFile].path) /al $(appbundles[DeleteWallsApp].path)"],
 "parameters": {
 "rvtFile": {
 "zip": false,
 "ondemand": false,
 "verb": "get",
 "description": "Input Revit model",
 "required": true,
 "localName": "$(rvtFile)"
 },
 "result": {
 "zip": false,
 "ondemand": false,
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "result.rvt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": ["YourNickname.DeleteWallsApp+test"],
 "description": "Delete walls from Revit file."
 }'

JSON Description

id The name given to your new activity.

commandLine

The command run by this activity.

• $(engine.path)\\\\revitcoreconsole.exe - The full path to the

folder from which the engine for Revit executes. The engine is

defined in the request body as "engine": "Autodesk.Revit+2018".

More information about engines is here. Do not edit or alter this

"commandLine" in the request body of activity posts.

• $(args[rvtFile].path) - The full path to the folder which contains

the input Revit model. rvtFileis the parameter name that the

activity (DeleteWallsActivity) defines for the input Revit model.

• $(appbundles[DeleteWallsApp].path) - The full path to the folder

from which the appbundleexecutes. DeleteWallsApp refers to the

https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/AppBundle.md#engine-version-aliases

Page 17

JSON Description

appbundle's id in "appbundles": [

"YourNickname.DeleteWallsApp+test"].

• YourNickname - The owner of the appbundle DeleteWallsApp. More

information about nicknames can be found here.

engine
The engine on which your activity runs. The available engine versions are

described here.

Response

{
 "commandLine": [
 "$(engine.path)\\\\revitcoreconsole.exe /i $(args[rvtFile].path) /al
$(appbundles[DeleteWallsApp].path)"
],
 "parameters": {
 "rvtFile": {
 "verb": "get",
 "description": "Input Revit model",
 "required": true,
 "localName": "$(rvtFile)"
 },
 "result": {
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "result.rvt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": [
 "YourNickname.DeleteWallsApp+test"
],
 "description": "Delete walls from Revit file.",
 "version": 1,
 "id": "YourNickname.DeleteWallsActivity"
}

https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/Nickname.md
https://git.autodesk.com/design-automation/design-automation-for-revit/blob/develop/Docs/AppBundle.md#engine-version-aliases

Page 18

The response to the new activity post includes:

JSON Description

version
The version number for the activity created by the POST request. For the Post

request creating a new activity, version always returns 1.

Create an Alias to the New Activity Version

The activity will be referenced using an alias. You cannot reference an activity by its id.

An alias targets a specific version of an activity.

Create an alias with the name test that refers to version 1 of the DeleteWallsActivity.
curl -X POST \
 https://developer.api.autodesk.com/da/us-
east/v3/activities/DeleteWallsActivity/aliases \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "version": 1,
 "id": "test"
 }'

Note:

• https://developer.api.autodesk.com/da/us-

east/v3/activites/{activity_id}/aliases - The {activity_id}(DeleteWallsActivity) in

this endpoint URL can be changed to use this example with other activity's id.

Response

{
 "version": 1,
 "id": "test"
}

Update an Existing Activity

It is possible to update the definitions of existing activities.

Create a New Version Number

To update the definition of an existing activity, you will have to creates a new version

of the activity.

If you still do the Post request for creating a new activity above, you will get a 409

Conflict error.

This POST command creates a new version for the activity DeleteWallsActivity.

Page 19

 curl -X POST \
 https://developer.api.autodesk.com/da/us-
east/v3/activities/DeleteWallsActivity/versions \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "id": null,
 "commandLine": ["$(engine.path)\\\\revitcoreconsole.exe /i
$(args[rvtFile].path) /al $(appbundles[DeleteWallsApp].path)"],
 "parameters": {
 "rvtFile": {
 "zip": false,
 "ondemand": false,
 "verb": "get",
 "description": "Input Revit model",
 "required": true,
 "localName": "$(rvtFile)"
 },
 "result": {
 "zip": false,
 "ondemand": false,
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "result.rvt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": ["YourNickname.DeleteWallsApp+test"],
 "description": "Delete walls from Revit file Updated."
 }'

Note:

• You can omit id in the request body. If you have id in the request body,

you must assign null for "id", otherwise you will get errors!
• https://developer.api.autodesk.com/da/us-

east/v3/activities/{activity_id}/versions - The activity

{activity_id}(DeleteWallsActivity) in the endpoint URL can be changed to use this

example with other activity's id.

Response

{
 "commandLine": [
 "$(engine.path)\\\\revitcoreconsole.exe /i $(args[rvtFile].path) /al
$(appbundles[DeleteWallsApp].path)"
],
 "parameters": {
 "rvtFile": {

Page 20

 "verb": "get",
 "description": "Input Revit model",
 "required": true,
 "localName": "$(rvtFile)"
 },
 "result": {
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "result.rvt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": [
 "YourNickname.DeleteWallsApp+test"
],
 "description": "Delete walls from Revit file Updated.",
 "version": 2,
 "id": "YourNickname.DeleteWallsActivity"
}

Assign an existing alias to another version of an activity

You can update an existing alias to point to another version of an activity.

This is very similar to updating aliases for appbundles, although you’ll use the activity

endpoint instead of the appbundle one.

Using a different language

You can request Revit to run in a different language using the /l specifier in the

command line, for example, when creating an activity:
{
 "commandLine": [
 "$(engine.path)\\\\revitcoreconsole.exe /i $(args[rvtFile].path) /al
$(apps[DeleteWallsApp].path) /l DEU"
],
}

• This will tell Revit to launch in German, and all Revit output will be in German. This would

be useful if you want in-built elements and types to have German names.

See this article for the full list of language codes.

Note that Design Automation for Revit output is only in English; however Revit API

output is localized and can be customized to use different languages.

https://knowledge.autodesk.com/support/revit-products/troubleshooting/caas/CloudHelp/cloudhelp/2017/ENU/Revit-Installation/files/GUID-BD09C1B4-5520-475D-BE7E-773642EEBD6C-htm.html

Page 21

6. Post your Design Automation workitem

When you post a workitem to Design Automation, you are requesting a job to be run on

Design Automation.

A workitem is used to execute an activity. The relationship between an activity and a

workitem can be thought of as a “function definition” and “function call”, respectively.

Named parameters of the activity have corresponding named arguments of the

workitem. Like in function calls, optional parameters of the activity can be skipped and

left unspecified while posting a workitem.

POST a Workitem

Here is an example of a workitem that executes the DeleteWallsActivity.
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/workitems \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "activityId": "YourNickname.DeleteWallsActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://[myURL]/DeleteWalls.rvt"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result"
 }
 }
 }'

LongStringAccessTokenObtainedDuringAuthentication needs to be replaced with your

authentication token string.

JSON Description

activityId

The target activity defined by

"owner.activity+alias"(YourNickname.DeleteWallsActivity+test) this

workitem will execute.

arguments

The argument list that is required by the activity (DeleteWallsActivity):

• rvtFile - It is the URL to get the input file that will be processed by

the workitem.

Page 22

JSON Description

• result - It is the URL to which the output will be "put"

(uploaded). You must provide this URL; there are no default

Design Automation URLs for output data.

Reponse

The HTTP response will contain the id of the posted workitem.
{
 "status": "pending",
 "stats": {
 "timeQueued": "2018-04-16T21:45:08.1357163Z"
 },
 "id": "e8a3ee53770a4eaeb86f267aab76af47"
}

Workitem Status

Design Automation workitems are queued before they are processed. Processed

workitems may have run successfully or may have failed execution.

You can check the status of a workitem by calling [GET] /workitems/{id}:
curl -X GET \
 https://developer.api.autodesk.com/da/us-
east/v3/workitems/e8a3ee53770a4eaeb86f267aab76af47 \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication'

LongStringAccessTokenObtainedDuringAuthentication needs to be replaced with your

authentication token string.

Notes: https://developer.api.autodesk.com/da/us-east/v3/workitems/{workitemId} - The

{workitemId}(e8a3ee53770a4eaeb86f267aab76af47) must be changed to use your workitem

id.
Response

The Response is like below:

{
 "status": "success",
 "reportUrl":
"https://[myURL].com/workItem/Revit/e8a3ee53770a4eaeb86f267aab76af47/report.txt?XXXXX
XXXX",
 "stats": {
 "timeQueued": "2018-04-13T03:15:15.9772282Z",
 "timeDownloadStarted": "2018-04-13T03:15:17.2960823Z",
 "timeInstructionsStarted": "2018-04-13T03:15:20.2803318Z",
 "timeInstructionsEnded": "2018-04-13T03:15:41.6075799Z",
 "timeUploadEnded": "2018-04-13T03:15:42.0450494Z"

Page 23

 },
 "id": "e8a3ee53770a4eaeb86f267aab76af47"
}

JSON Description

status Indicates if execution is pending, successful, failed or cancelled.

reportUrl The URL to get the report log for this workitem's execution.

progress A place holder for future use. You can ignore this now.

Arguments: More Support

Input Arguments: Embedded JSON

If an input argument of an activity requires JSON values, the JSON values can be

embedded in the workitem itself.

For example, the activity CountItActivity requires a parameter named countItParams,

which indicates which Revit elements to take a count of. The activity expects the

argument value to be a JSON file. The workitem is able to embed the JSON values in the

workitem itself as below.

By prefixing those values with data:application/json,, it instructs the Design

Automation framework to treat them as JSON stream and save them as a JSON file.
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/workitems \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "activityId": "YourNickname.CountItActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://[myURL].com/CountIt.rvt"
 },
 "countItParams": {
 "url": "data:application/json,{'walls': false, 'floors': true, 'doors':
true, 'windows': true}"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result"
 }
 }
 }'

Page 24

Input Arguments: ETransmit Files

Design Automation is capable of processing outputs from ETransmit for Revit, so long as

you first create a zip file from those outputs.

curl POST \
 https://developer.api.autodesk.com/da/us-east/v3/workitems \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "activityId" : "YourNickname.CountItActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://[myURL].com/TopHost.zip"
 },
 "countItParams": {
 "url": "data:application/json,{'walls': true, 'floors': true, 'doors':
true, 'windows': true}"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result"
 }
 }
 }'

A sample ETransmit file TopHost.zip is available at TopHost.zip.

The name of the “Root Model” is read from the manifest file. The root model is then

found in the zip.

Host RVT File with Linked Models
curl POST \
 https://developer.api.autodesk.com/da/us-east/v3/workitems \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "activityId": "YourNickname.CountItActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://[myURL].com/TopHost.rvt",
 "references": [
 {
 "url": "https://[myURL].com/LinkA.rvt",
 "references": [
 {
 "url": "https://[myURL].com/LinkA1.rvt"
 },
 {
 "url": "https://[myURL].com/LinkA2.rvt"

https://revitio.s3.amazonaws.com/documentation/TopHost.zip

Page 25

 }
]
 },
 {
 "url": "https://[myURL].com/LinkB.rvt"
 }
]
 },
 "countItParams": {
 "url": "data:application/json,{'walls': true, 'floors': true, 'doors':
true, 'windows': true}"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result"
 }
 }
 }'

The root model in this example is TopHost.rvt and it contains LinkA.rvt and LinkB.rvt.

The file LinkA.rvt in turn contains LinkA1.rvt and LinkA2.rvt. Each of these files are

uploaded to a Cloud location and the path is provided for each individually.
TopHost.rvt
|-- LinkA.rvt
| |-- LinkA1.rvt
| |-- LinkA2.rvt
|
|-- LinkB.rvt

RvtLinks in Sub-Folders

The workitem's localName variable can be used to create a folder structure inside the

working directory. For example, a Revit file Host.rvt containing a relative

link SubFolder/Link.rvt can be defined in this way for rvtFile in the workitem:
{
 "url": "https://[myURL].com/TestForSubFolders/Host.rvt",
 "references": [
 {
 "url": "https://[myURL].com/TestForSubFolders/Link.rvt",
 "localName": "SubFolder/Link.rvt"
 }
]
}

This will create the directory/file structure in the current working directory (CWD):

{CWD}/Host.rvt
{CWD}/SubFolder/Link.rvt

Because you are not allowed to create a folder structure outside of your current working

directory, if the host file has linked files with relative paths like ../ParallelFolder/Link.rvt,

you can move the entire structure down one level by creating a top level folder of your

Page 26

own. The same localName variable can be used for the top host like you use for linked

files. Here is an example json.
{
 "url": "https://path/to/Host.rvt",
 "localName": "TopFolder/Host.rvt",
 "references": [
 {
 "url": "https://path/to/Link.rvt",
 "localName": "ParallelFolder/Link.rvt"
 }
]
}

This will create the directory/file structure:

{CWD}/TopFolder/Host.rvt
{CWD}/ParallelFolder/Link.rvt

Output Arguments: onComplete callback

Each workitem is furnished with a special output argument named onComplete. When

provided, the callback URL will be called on completion of the workitem.

Here is an example of how to call [POST] /workitems, which adds onComplete argument to

the earlier example.
curl -X POST \
 https://developer.api.autodesk.com/da/us-east/v3/workitems \
 -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer LongStringAccessTokenObtainedDuringAuthentication' \
 -d '{
 "activityId": "YourNickname.DeleteWallsActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://[myURL].com/DeleteWalls.rvt"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result"
 },
 "onComplete": {
 "verb": "post",
 "url": "https://myWebsite/callback"
 }
 }
 }'

This argument is not required to be provided on every [POST] /workitems call.

On completion of the workitem, the sepecified url is called with a payload identical to

the response received on [GET] /workitems/{id} call.

Page 27

Since the nature of the implementation of the callback url is similar to how one may

implement a callback url for Webhooks API, you may refer the Webhooks API

documentation. You may also find their documentation for configuring local

server helpful.

7. Appendix A: Design Automation Quotas and
Restrictions

There are quotas and restrictions on appbundles, activities and workItems.

Naming restrictions

There are some restrictions on nickname, alias and id of appbundle/activity: you can only

use alphanumeric characters [a-zA-Z_0-9].

Appbundle Limits

Limit Value Description

Appbundle upload size 100 MB
Max permitted size of an appbundle upload in

megabytes.

Payload size 8 KB
Max permitted size for appbundle/activity json

payload in kilobytes.

Versions 100
Max permitted number of appbundle/activity

versions a client can have at any one time.

Additional Appbundle Restrictions

There are additional restrictions placed on appbundles that run on Design Automation

API for Revit. These include:

• No access to Revit's UI interfaces. Your application must be a RevitDB application only.

https://developer.autodesk.com/en/docs/webhooks/v1/overview/
https://developer.autodesk.com/en/docs/webhooks/v1/tutorials/configuring-your-server/
https://developer.autodesk.com/en/docs/webhooks/v1/tutorials/configuring-your-server/

Page 28

• Applications must be able to process jobs to completion without waiting for user input

or interaction.

• No network access is allowed.

• Writing to the disk is restricted to Revit's current working directory.

• Your application is run with low privileges, and will not be able to freely interact with

Windows OS.

Alias Limits

Limit Value Description

Aliases 100
Max permitted number of aliases that a client can have

at any one time.

Activity Limits

Limit Value Description

Payload size 8 KB
Max permitted size for appbundle/activity json

payload in kilobytes.

Total uncompressed

appbundles size
2,000 MB

Max permitted size of all appbundles referenced by

an activity. It is enforced when you post a workitem.

Versions 100
Max permitted number of appbundle/activity

versions a client can have at any one time.

Workitem Limits

Limit Value Description

Downloads 200 Max number of downloads per workitem.

Download size 2,000 MB Max total size of all downloads in MB per workitem.

Processing time
3,600 seconds

(1 hour)

Max duration of processing in seconds per workitem

(includes download and upload time).

Uploads 200 Max number of uploads per workitem.

Upload size 2,000 MB Max total size of all uploads in MB per workitem.

Workitems per

minute
20 per/min

Max number of workitems a client can submit in one

minute.

Page 29

8. Appendix B: Handling Failures in Revit Appbundles

Normally posted failures are processed by Revit's standard failure resolution UI at the

end of a transaction when Transaction.Commit() or Transaction.Rollback() are invoked.

The user is presented information and options to deal with the failures.

If an operation (or set of operations) on the document requires some special treatment

from a Revit addin for certain errors, failure handling can be customized to carry out this

resolution. Custom failure handling can be supplied:

• For a given transaction using the interface IFailuresPreprocessor.

• For all possible errors using the FailuresProcessing event.

Finally, the API offers the ability to completely replace the standard failure processing

user interface using the interface IFailuresProcessor. Although the first two methods for

handling failures should be sufficient in most cases, this last option can be used in

special cases, such as to provide a better failure processing UI (UI is not available in

Design Automation for Revit) or when an application is used as a front-end on top of

Revit.

Overview of Failure Processing

It is important to remember there are many things happening between the call to

Transaction.Commit() and the actual processing of failures. Auto-join, overlap checks,

group checks and workset editability checks are just to name a few. These checks and

changes may make some failures disappear or, more likely, can post new failures.

Therefore, conclusions cannot be drawn about the state of failures to be processed

when Transaction.Commit() is called. To process failure correctly, it is necessary to hook

up the actual failure processing mechanism.

When failures processing begins, all changes to a document that are supposed to be

made in the transaction are made, and all failures are posted. Therefore, no uncontrolled

changes to a document are allowed during failures processing. There is a limited ability

to resolve failures via the restricted interface provided by FailureAccessor. If this has

happened all end of transaction checks and failure processing must be repeated. So,

there may be a few failure resolution cycles at the end of one transaction.

Each cycle of failures processing includes 3 steps:

Page 30

1. Preprocessing of failures (FailuresPreprocessor)

2. Broadcasting of failures processing events (FailuresProcessing event)

3. Final processing (FailuresProcessor)

Each of these 3 steps can control what happens next by returning different

FailureProcessingResults. The options are:

• Continue - has no impact on execution flow. If FailuresProcessor returns "Continue" with

unresolved failures, Revit will instead act as if "ProceedWithRollBack" was returned.

• ProceedWithCommit - interrupts failures processing and immediately triggers another

loop of end-of-transaction checks followed by another failures processing. Should be

returned after an attempt to resolve failures. Can easily lead to an infinite loop if

returned without any successful failure resolution. Cannot be returned if transaction is

already being rolled back and will be treated as "ProceedWithRollBack" in this case.

• ProceedWithRollback - continues execution of failure processing, but forces transaction

to be rolled back, even if it was originally requested to commit. If before

ProceedWithRollBack is returned FailureHandlingOptions are set to clear errors after

rollback, no further error processing will take place, all failures will be deleted and the

transaction is rolled back silently. Otherwise default failure processing will continue but

the transaction is guaranteed to be rolled back.

Depending on the severity of failures posted in the transaction and whether the

transaction is being committed or rolled back, each of these 3 steps may have certain

options to resolve errors. All information about failures posted in a document,

information about ability to perform certain operations to resolve failures and API to

perform such operations are provided via the FailuresAccesor class. The Document can

be used to obtain additional information, but it cannot be changed other than via

FailuresAccessor.

Failure Handling in Design Automation for Revit

Default Failure Handling

The DesignAutomationBridge comes with a default failure handler. This failure handler

will suppress all the warnings it encounters. In case of errors it will try to resolve them. If

resolved successfully, the transaction will proceed with commit. If the default resolution

is to delete elements the failure handler will not perform the delete action and will

proceed with roll back.

Page 31

Custom Failure Handling

You can implement your own custom failure handler to override the default failure

handler. The failure posting API is easy to use. A custom failure definition can be

registered in the HandleDesignAutomationReadyEvent() method of an external

application, and then the failure severity and resolution type can be set. To register a

failures processor, implement the interface IFailuresProcessor and register it using the

Application.RegisterFailuresProcessor() method. Here is a code fragment to register a

custom failure handler.

public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
{
 // Hook up the CustomFailureHandling failure processor.
 Application.RegisterFailuresProcessor(new CustomFailureHandlingProcessor());

 // Run the application logic.
 SketchItFunc(e.DesignAutomationData);

 e.Succeeded = true;
}

FailuresProcessor

The IFailuresProcessor interface gets control last, after the FailuresProcessing event is

processed. There is only one active IFailuresProcessor in a Revit session. If there is a

previously registered failures processor, it is discarded. If the addin does not provide a

failure processor of its own, then the default failure processor from Design Automation

for Revit will be active. You can deactivate the default failure processor from Design

Automation for Revit by passing null to RegisterFailuresProcessor(). In the absence of all

failure processors, Revit resolves failures via the default failure resolution type.

Warning: The IFailuresProcessor.ProcessFailures() method is allowed to return

WaitForUserInput, which leaves the transaction pending so that the FailuresProcessor

can display UI and get user input before resolving the failure. Don't use

WaitForUserInput in Design Automation for Revit; there is no UI or user interaction in

Design Automation for Revit.

The default failure handler from Design Automation for Revit implements

IFailuresProcessor and suppresses any warnings. If there are errors, the code rolls back

the transaction. If you need a different behavior, you can modify the code for the default

FailureProcessor to fit your specifications.

Page 32

9. Appendix C: Sample Appbundle
We have code samples showing simple examples of the creation, modification, and extraction
workflows for Design Automation.

Creation Workflow - SketchIt

SketchIt is an application that creates walls and floors in a rvt file. It takes a JSON file

that specifies the walls and floors to be created, and outputs a new rvt file.

Note: You will not be able to run this sample today. The DesignAutomationBridge

dependency is not available, and Design Automation is not accepting Revit queries yet.

However, we wanted to provide some sample code to show you what an appbundle will

look like. As before, the interfaces are subject to change before release, but this is

accurate as of October 2018.

Dependencies

This project was built in Visual Studio 2017.

This sample references Revit 2018's RevitAPI.dll, DesignAutomationBridge.dll for Revit

2018 and Newtonsoft JSON framework.

In order to POST appbundles, activities, and workitems you must have credentials

for Forge.

Creating and Publishing the Appbundle

Create an appbundle zip package from the build outputs and publish the appbundle to

Design Automation.

The JSON in your appbundle POST should look like this:
{
 "id": "SketchItApp",
 "engine": "Autodesk.Revit+2018",
 "description": "SketchIt appbundle based on Revit 2018"
}

Notes:

• engine = Autodesk.Revit+2018

After you upload the appbundle zip package, you should create an alias for this

appbundle. The JSON in the POST should look like this:
{
 "version": 1,
 "id": "test"

}.

https://www.newtonsoft.com/json

Page 33

Creating the Activity

Define an activity to run against the appbundle.

The JSON that accompanies the activity POST will look like this:
{
 "id": "SketchItActivity",
 "commandLine": ["$(engine.path)\\\\revitcoreconsole.exe /al
$(appbundles[SketchItApp].path)"],
 "parameters": {
 "sketchItInput": {
 "zip": false,
 "ondemand": false,
 "verb": "get",
 "description": "SketchIt input parameters",
 "required": true,
 "localName": "SketchItInput.json"
 },
 "result": {
 "zip": false,
 "ondemand": false,
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "sketchIt.rvt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": ["YourNickname.SketchItApp+test"],
 "description": "Creates walls and floors from an input JSON file."
}

Notes:

• engine = Autodesk.Revit+2018

• YourNickname - The owner of appbundle SketchItApp.

Then you should create an alias for this activity. The JSON in the POST should look like

this:
{
 "version": 1,
 "id": "test"
}

POST a WorkItem

Now POST a workitem against the activity to run a job on your appbundle.

The JSON that accompanies the workitem POST will look like this:
{
 "activityId": "YourNickname.SketchItActivity+test",
 "arguments": {
 "sketchItInput": {

Page 34

 "url": "data:application/json,{ 'walls': [{'start': { 'x': -100, 'y': 100,
'z': 0.0}, 'end': { 'x': 100, 'y': 100, 'z': 0.0}}, {'start': { 'x': -100, 'y': 100,
'z': 0.0}, 'end': { 'x': 100, 'y': 100, 'z': 0.0}}, {'start': { 'x': 100, 'y': 100,
'z': 0.0}, 'end': { 'x': 100, 'y': -100, 'z': 0.0}}, {'start': { 'x': 100, 'y': -100,
'z': 0.0}, 'end': { 'x': -100, 'y': -100, 'z': 0.0}}, {'start': { 'x': -100, 'y': -
100, 'z': 0.0}, 'end': { 'x': -100, 'y': 100, 'z': 0.0}}, {'start': { 'x': -500, 'y':
-300, 'z': 0.0}, 'end': { 'x': -300, 'y': -300, 'z': 0.0}}, {'start': { 'x': -300,
'y': -300, 'z': 0.0}, 'end': { 'x': -300, 'y': -500, 'z': 0.0}}, {'start': { 'x': -
300, 'y': -500, 'z': 0.0}, 'end': { 'x': -500, 'y': -500, 'z': 0.0}}, {'start': {
'x': -500, 'y': -500, 'z': 0.0}, 'end': { 'x': -500, 'y': -300, 'z': 0.0}}],'floors'
: [[{'x': -100, 'y': 100, 'z':0.0}, {'x': 100, 'y': 100, 'z': 0.0}, {'x': 100, 'y':
-100, 'z': 0.0}, {'x': -100, 'y': -100, 'z': 0.0}], [{'x': -500, 'y': -300, 'z':0.0},
{'x': -300, 'y': -300, 'z': 0.0}, {'x': -300, 'y': -500, 'z': 0.0}, {'x': -500, 'y':
-500, 'z': 0.0}]]}"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/sketchIt.rvt"
 }
 }
}

Notes:

• YourNickname - The owner of activity SketchItActivity.

SketchItActivity expects an input file SketchItInput.json. The contents of the

embedded JSON are stored in a file named SketchItInput.json, as specified by

the parameters of sketchItInput in the activity SketchItActivity. The SketchIt application

reads this file from current working folder, parses the JSON and creates walls and floors

from the extracted specifications in a new created Revit file sketchIt.rvt, which will be

uploaded to url you provide in the workitem.

The function SketchItFunc in SketchIt.cs performs these operations.

Source code

SketchIt.cs
using System;
using System.Collections.Generic;
using System.IO;

using Autodesk.Revit.ApplicationServices;
using Autodesk.Revit.DB;
using DesignAutomationFramework;

namespace SketchIt
{

Page 35

[Autodesk.Revit.Attributes.Regeneration(Autodesk.Revit.Attributes.RegenerationOption.Manu
al)]

[Autodesk.Revit.Attributes.Transaction(Autodesk.Revit.Attributes.TransactionMode.Manual)]
 class SketchItApp : IExternalDBApplication
 {
 public ExternalDBApplicationResult
OnStartup(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 DesignAutomationBridge.DesignAutomationReadyEvent +=
HandleDesignAutomationReadyEvent;
 return ExternalDBApplicationResult.Succeeded;
 }

 public ExternalDBApplicationResult
OnShutdown(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 return ExternalDBApplicationResult.Succeeded;
 }

 public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
 {
 // Run the application logic.
 SketchItFunc(e.DesignAutomationData);

 e.Succeeded = true;
 }

 private static void SketchItFunc(DesignAutomationData data)
 {
 if (data == null)
 throw new InvalidDataException(nameof(data));

 Application rvtApp = data.RevitApp;
 if (rvtApp == null)
 throw new InvalidDataException(nameof(rvtApp));

 Document newDoc = rvtApp.NewProjectDocument(UnitSystem.Imperial);
 if (newDoc == null)
 throw new InvalidOperationException("Could not create new document.");
 string filePath = "sketchIt.rvt";

 string filepathJson = "SketchItInput.json";
 SketchItParams jsonDeserialized = SketchItParams.Parse(filepathJson);

 CreateWalls(jsonDeserialized, newDoc);

 CreateFloors(jsonDeserialized, newDoc);

 newDoc.SaveAs(filePath);
 }

Page 36

 private static void CreateWalls(SketchItParams jsonDeserialized, Document newDoc)
 {
 FilteredElementCollector levelCollector = new FilteredElementCollector(newDoc);
 levelCollector.OfClass(typeof(Level));
 ElementId someLevelId = levelCollector.FirstElementId();
 if (someLevelId == null || someLevelId.IntegerValue < 0) throw new
InvalidDataException("ElementID is invalid.");

 List<Curve> curves = new List<Curve>();
 foreach (WallLine lines in jsonDeserialized.Walls)
 {
 XYZ start = new XYZ(lines.Start.X, lines.Start.Y, lines.Start.Z);
 XYZ end = new XYZ(lines.End.X, lines.End.Y, lines.End.Z);
 curves.Add(Line.CreateBound(start, end));
 }

 using (Transaction wallTrans = new Transaction(newDoc, "Create some walls"))
 {
 wallTrans.Start();

 foreach (Curve oneCurve in curves)
 {
 Wall.Create(newDoc, oneCurve, someLevelId, false);
 }

 wallTrans.Commit();
 }
 }

 private static void CreateFloors(SketchItParams jsonDeserialized, Document newDoc)
 {
 foreach (List<Point> floorPoints in jsonDeserialized.Floors)
 {
 CurveArray floor = new CurveArray();
 int lastPointOnFloor = floorPoints.Count - 1;

 for (int pointNum = 0; pointNum <= lastPointOnFloor; pointNum++)
 {
 XYZ startPoint = new XYZ(floorPoints[pointNum].X, floorPoints[pointNum].Y,
floorPoints[pointNum].Z);
 XYZ endPoint;

 if (pointNum == lastPointOnFloor)
 {
 endPoint = new XYZ(floorPoints[0].X, floorPoints[0].Y,
floorPoints[0].Z);
 }
 else
 {
 endPoint = new XYZ(floorPoints[pointNum + 1].X, floorPoints[pointNum +
1].Y, floorPoints[pointNum + 1].Z);
 }

 Curve partOfFloor = Line.CreateBound(startPoint, endPoint);

Page 37

 floor.Append(partOfFloor);
 }

 using (Transaction floorTrans = new Transaction(newDoc, "Create a floor"))
 {
 floorTrans.Start();
 newDoc.Create.NewFloor(floor, false);
 floorTrans.Commit();
 }
 }
 }
 }
}

SketchItParams.cs

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SketchIt
{

 internal class Point
 {
 [JsonProperty(PropertyName = "x")]
 public double X { get; set; } = 0.0;
 [JsonProperty(PropertyName = "y")]
 public double Y { get; set; } = 0.0;
 [JsonProperty(PropertyName = "z")]
 public double Z { get; set; } = 0.0;
 }
 internal class WallLine
 {
 [JsonProperty(PropertyName = "start")]
 public Point Start { get; set; }
 [JsonProperty(PropertyName = "end")]
 public Point End { get; set; }
 }

 internal class SketchItParams
 {
 [JsonProperty(PropertyName = "walls")]
 public IList<WallLine> Walls { get; set; }
 [JsonProperty(PropertyName = "floors")]
 public IList<IList<Point>> Floors { get; set; }

Page 38

 static public SketchItParams Parse(string jsonPath)
 {
 try
 {
 if (!File.Exists(jsonPath))
 return new SketchItParams();

 string jsonContents = File.ReadAllText(jsonPath);
 return JsonConvert.DeserializeObject<SketchItParams>(jsonContents);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception happens when parsing the json file: " + ex);
 return null;
 }
 }
 }
}

Modification Workflow – DeleteWalls

DeleteWalls is an application that takes in a rvt file and outputs another rvt file with all of the

walls removed.

Notes on POSTing the DeleteWalls WorkItem

The JSON that accompanies the WorkItem POST will look like this:
{
 "activityId": "YourNickname.DeleteWallsActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://myWebsite/DeleteWalls.rvt"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result.rvt"
 }
 }
}

The value of the rvtFile parameter is the URL to the input file DeleteWalls.rvt.

DeleteWalls application opens DeleteWalls.rvt, deletes the walls in it and saves it

as result.rvt. The output file result.rvt will be uploaded to url you provide in the

workitem.

The function DeleteAllWalls in DeleteWalls.cs performs these operations.

Page 39

Source code

DeleteWalls.cs

using System;
using System.IO;

using Autodesk.Revit.ApplicationServices;
using Autodesk.Revit.DB;
using DesignAutomationFramework;

namespace DeleteWalls
{

[Autodesk.Revit.Attributes.Regeneration(Autodesk.Revit.Attributes.RegenerationOption.Manu
al)]

[Autodesk.Revit.Attributes.Transaction(Autodesk.Revit.Attributes.TransactionMode.Manual)]
 public class DeleteWallsApp : IExternalDBApplication
 {
 public ExternalDBApplicationResult
OnStartup(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 DesignAutomationBridge.DesignAutomationReadyEvent +=
HandleDesignAutomationReadyEvent;
 return ExternalDBApplicationResult.Succeeded;
 }

 public ExternalDBApplicationResult
OnShutdown(Autodesk.Revit.ApplicationServices.ControlledApplication app)
 {
 return ExternalDBApplicationResult.Succeeded;
 }

 public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
 {
 e.Succeeded = true;
 DeleteAllWalls(e.DesignAutomationData);
 }

 public static void DeleteAllWalls(DesignAutomationData data)
 {
 if (data == null) throw new ArgumentNullException(nameof(data));

 Application rvtApp = data.RevitApp;
 if (rvtApp == null) throw new InvalidDataException(nameof(rvtApp));

 string modelPath = data.FilePath;
 if (String.IsNullOrWhiteSpace(modelPath)) throw new
InvalidDataException(nameof(modelPath));

 Document doc = data.RevitDoc;

Page 40

 if (doc == null) throw new InvalidOperationException("Could not open
document.");

 using (Transaction transaction = new Transaction(doc))
 {
 FilteredElementCollector col = new
FilteredElementCollector(doc).OfClass(typeof(Wall));
 transaction.Start("Delete All Walls");
 doc.Delete(col.ToElementIds());
 transaction.Commit();
 }

 ModelPath path = ModelPathUtils.ConvertUserVisiblePathToModelPath("result.rvt");
 doc.SaveAs(path, new SaveAsOptions());
 }
 }
}

Extraction Workflow – CountIt

CountIt is an application that counts walls, floors, doors and windows in a rvt file and its

rvt links. It takes a JSON file that specifies which categories of elements will be counted.

The output of this application is a text file which contains the element counts.

Notes on creating the Activity

Define an activity to run against the appbundle.

The JSON that accompanies the activity POST will look like this:
{
 "id": "CountItActivity",
 "commandLine": ["$(engine.path)\\\\revitcoreconsole.exe /i $(args[rvtFile].path)
/al $(appbundles[CountItApp].path)"],
 "parameters": {
 "rvtFile": {
 "zip": false,
 "ondemand": false,
 "verb": "get",
 "description": "Input Revit model",
 "required": true,
 "localName": "$(rvtFile)"
 },
 "countItParams": {
 "zip": false,
 "ondemand": false,
 "verb": "get",
 "description": "CountIt parameters",
 "required": false,
 "localName": "CountItParams.json"
 },

Page 41

 "result": {
 "zip": false,
 "ondemand": false,
 "verb": "put",
 "description": "Results",
 "required": true,
 "localName": "result.txt"
 }
 },
 "engine": "Autodesk.Revit+2018",
 "appbundles": ["YourNickname.CountItApp+test"],
 "description": "Count and output elements from Revit file."
}

Then you should create an alias for this activity. The JSON in the POST should look like

this:
{
 "version": 1,
 "id": "test"
}

Notes on POSTing the WorkItem

Now POST a workitem against the activity to run a job on your appbundle.

The JSON that accompanies the workitem POST will look like this:
{
 "activityId": "YourNickname.CountItActivity+test",
 "arguments": {
 "rvtFile": {
 "url": "https://myWebsite/CountIt.rvt"
 },
 "countItParams": {
 "url": "data:application/json,{'walls': false, 'floors': true, 'doors': true,
'windows': true}"
 },
 "result": {
 "verb": "put",
 "url": "https://myWebsite/signed/url/to/result.txt"
 }
 }
}

CountItActivity expects an input file CountItParams.json. The contents of the embedded

JSON will be stored in a file named CountItParams.json, as specified by

the parameters of countItParams in the activity CountItActivity. The CountIt application

Page 42

reads this file from current working folder and parses the JSON to determine which

element categories should be counted. The counting result is saved to result.txt which

will be uploaded to url you provide in the workitem.

The function CountElementsInModel in Main.cs performs these operations.

Source code

Main.cs

using System.Collections.Generic;
using System.IO;

using Autodesk.Revit.ApplicationServices;
using Autodesk.Revit.DB;
using DesignAutomationFramework;
using Newtonsoft.Json;

namespace CountIt
{

[Autodesk.Revit.Attributes.Regeneration(Autodesk.Revit.Attributes.RegenerationOption.Manu
al)]

[Autodesk.Revit.Attributes.Transaction(Autodesk.Revit.Attributes.TransactionMode.Manual)]
 public class CountIt : IExternalDBApplication
 {
 public ExternalDBApplicationResult OnStartup(ControlledApplication app)
 {
 DesignAutomationBridge.DesignAutomationReadyEvent +=
HandleDesignAutomationReadyEvent;
 return ExternalDBApplicationResult.Succeeded;
 }

 public ExternalDBApplicationResult OnShutdown(ControlledApplication app)
 {
 return ExternalDBApplicationResult.Succeeded;
 }

 public void HandleDesignAutomationReadyEvent(object sender,
DesignAutomationReadyEventArgs e)
 {
 e.Succeeded = CountElementsInModel(e.DesignAutomationData.RevitApp,
e.DesignAutomationData.FilePath, e.DesignAutomationData.RevitDoc);
 }

 internal static List<Document> GetHostAndLinkDocuments(Document revitDoc)
 {
 List<Document> docList = new List<Document>();
 docList.Add(revitDoc);

Page 43

 // Find RevitLinkInstance documents
 FilteredElementCollector elemCollector = new
FilteredElementCollector(revitDoc);
 elemCollector.OfClass(typeof(RevitLinkInstance));
 foreach (Element curElem in elemCollector)
 {
 RevitLinkInstance revitLinkInstance = curElem as RevitLinkInstance;
 if (null == revitLinkInstance)
 continue;

 Document curDoc = revitLinkInstance.GetLinkDocument();
 if (null == curDoc) // Link is unloaded.
 continue;

 // When one linked document has more than one RevitLinkInstance in the
 // host document, then 'docList' will contain the linked document
multiple times.

 docList.Add(curDoc);
 }

 return docList;
 }

 internal static void CountElements(Document revitDoc, CountItParams
countItParams, ref CountItResults results)
 {
 if (countItParams.walls)
 {
 FilteredElementCollector elemCollector = new
FilteredElementCollector(revitDoc);
 elemCollector.OfClass(typeof(Wall));
 int count = elemCollector.ToElementIds().Count;
 results.walls += count;
 results.total += count;
 }

 if (countItParams.floors)
 {
 FilteredElementCollector elemCollector = new
FilteredElementCollector(revitDoc);
 elemCollector.OfClass(typeof(Floor));
 int count = elemCollector.ToElementIds().Count;
 results.floors += count;
 results.total += count;
 }

 if (countItParams.doors)
 {
 FilteredElementCollector collector = new
FilteredElementCollector(revitDoc);
 ICollection<Element> collection =
collector.OfClass(typeof(FamilyInstance))
 .OfCategory(BuiltInCategory.OST_Doors)

Page 44

 .ToElements();

 int count = collection.Count;
 results.doors += count;
 results.total += count;
 }

 if (countItParams.windows)
 {
 FilteredElementCollector collector = new
FilteredElementCollector(revitDoc);
 ICollection<Element> collection =
collector.OfClass(typeof(FamilyInstance))

.OfCategory(BuiltInCategory.OST_Windows)
 .ToElements();

 int count = collection.Count;
 results.windows += count;
 results.total += count;
 }
 }

 public static bool CountElementsInModel(Application rvtApp, string
inputModelPath, Document doc)
 {
 if (rvtApp == null)
 return false;

 if (!File.Exists(inputModelPath))
 return false;

 if (doc == null)
 return false;

 // For CountIt workItem: If RvtParameters is null, count all types
 CountItParams countItParams = CountItParams.Parse("CountItParams.json");
 CountItResults results = new CountItResults();

 List<Document> allDocs = GetHostAndLinkDocuments(doc);
 foreach(Document curDoc in allDocs)
 {
 CountElements(curDoc, countItParams, ref results);
 }

 using (StreamWriter sw = File.CreateText("result.txt"))
 {
 sw.WriteLine(JsonConvert.SerializeObject(results));
 sw.Close();
 }

 return true;
 }
 }

Page 45

}

CountItParams.cs

using System;
using System.IO;
using Newtonsoft.Json;

namespace CountIt
{
 internal class CountItParams
 {
 public bool walls { get; set; } = false;
 public bool floors { get; set; } = false;
 public bool doors { get; set; } = false;
 public bool windows { get; set; } = false;

 static public CountItParams Parse(string jsonPath)
 {
 try
 {
 if (!File.Exists(jsonPath))
 return new CountItParams { walls = true, floors = true, doors = true,
windows = true };

 string jsonContents = File.ReadAllText(jsonPath);
 return JsonConvert.DeserializeObject<CountItParams>(jsonContents);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception when parsing json file: " + ex);
 return null;
 }
 }
 }
}

CountItResults.cs

namespace CountIt
{
 internal class CountItResults
 {
 public int walls { get; set; } = 0;
 public int floors { get; set; } = 0;
 public int doors { get; set; } = 0;
 public int windows { get; set; } = 0;
 public int total { get; set; } = 0;
 }
}

