
!

196412

Creating Flexible Offline Workflows Using Autodesk
Forge
Michael Beale
Autodesk

Michael Ponti
Honeywell

Description
Autodesk Forge is an on-demand web services platform. That means you need to be online to
connect to the Autodesk servers to use the various Forge APIs. However, the Autodesk Forge
Viewer can work with multple online, as well as offline sources. There are times where an
offline workflow is preferable because of lack of connectivity, security concerns, or performance.
In this lecture, we will explore how to optimally use the Forge Viewer in an offline mode, and
how to cache and synchronize the data with the server.

Speaker(s)
Michael Beale - Autodesk
Michael Ponti - Honeywell

Page !1

Learning Objectives
• Understand Forge workflows
• How to Deploy an offline Solution using Forge Viewer
• Develop new tools and Processes

!

Notes by Petr Broz (Autodesk Forge Team)
https://forge.autodesk.com/blog/disconnected-workflows

Introduction
While Forge is a cloud platform, certain applications built on top of it may want to support
scenarios where the internet connection is temporarily unavailable. For example, consider an
application for reviewing and annotating CAD models - wouldn't it be nice if you could work on a
couple of CAD files while on a plane, and then perhaps sync your annotations when you're online
again? In this post we take a look at one possible approach to support these scenarios using
modern HTML5 APIs. We'll start with a quick introduction into the technology we're going to use,
followed by the strategy we can employ to cache Forge content, and finally we'll take a look at a
sample application (Figure 1).

Figure 1 - Sample Application

Technology
There are different ways to store data from a web application or an online service on your device.
In our sample application we will leverage a couple of new APIs from the increasingly more
popular area of Progressive Web Applications, specifically Service Workers, Cache, and Channel
Messaging.

Page !2

https://forge.autodesk.com/blog/disconnected-workflows
https://forge.autodesk.com/
https://en.wikipedia.org/wiki/Progressive_Web_Apps

!

While relatively new, these APIs are supported by most modern browsers. For a detailed overview,
check out the Is Service Worker Ready? website by Jake Archibald.
Service Worker is a special type of Web Worker that acts as a proxy server for web applications
from a specific origin. When a web application registers a service worker for itself, the worker can
intercept network requests from potentially many instances of the application (in different
browser tabs or windows) and respond with cached or even custom content. Apart from that,
service workers have access to other modern APIs like IndexedDB, Channel Messaging, or Push
APIs.
A typical lifecycle of a service worker looks like this:

• web app registers its service worker
• browser downloads and evaluates the worker script
• worker receives `install` event (used for one-time setup of resources)
• browser waits for all instances of the application (potentially using older service workers)

to close
• worker receives `activate` event (used to clean older worker’s cache, etc.)
• worker starts receiving `fetch` (to intercept network requests) and `message` (to

communicate with the web app) events

Service worker lifecycle as explained by MDN

Cache is a per-origin storage similar to Local
Storage or IndexedDB. It consists of uniquely
named cache objects, and each object then
stores individual HTTP Request/
Response pairs.

Page !3

https://jakearchibald.github.io/isserviceworkerready/index.html#moar
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

!

Figure 2 - Cache storage in Chrome DevTools

Channel Messaging allows scripts in different contexts (for example, between main document &
iframe, between web worker & web worker, between main document & service worker, etc.) to
communicate by passing messages through a two-way channel.

Caching Strategy
Caching static assets and API endpoints is straightforward. We can cache all of them when the
service worker is installed. Then, when one of these endpoints is requested, the service worker can

Page !4

https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API

!

provide the cached response immediately, and if needed, update the cache by fetching the
resource in the background.
Caching individual models is a bit more involved. A single document in Forge typically generates
multiple derivatives, and derivatives themselves often reference additional assets. We need a way
to identify these assets in order to be able to cache them when needed. In our sample application,
the server provides an endpoint which - given a document URN - provides a list of URLS for all its
derivatives and assets (inspired by the code behind https://extract.autodesk.io). When caching a
specific document, the service worker can use this endpoint and cache all the relevant URLs,
without having to involve the viewer in any way!

Sample Application
We've prepared a sample Forge Viewer application that allows its users to selectively cache models
from Model Derivative APIs. The source code is available at https://github.com/petrbroz/forge-
disconnected, and a live demo is running at https://forge-offline.herokuapp.com. Let's look at the
relevant pieces of the implementation.
On the backend, we're using a simple Express application which, apart from serving static content
from the public folder, exposes the following 3 endpoints:

• GET /api/token - returns a 2-legged auth token for the viewer
• GET /api/models - returns a list of models for viewing
• GET /api/models/:urn/files - returns information about all derivatives and assets related to

a specific model URN
On the client side, the two most important files are public/javascript/main.js and public/service-
worker.js.
Most of the code in public/javascript/main.js is just configuring the Forge Viewer, setting up the UI
overlay, and reacting to user input. The two important functions are initServiceWorker and
submitWorkerTask, located towards the end of the file. The former is used to register our service
worker, and the latter is used to post messages to it:

async function initServiceWorker() {
 try {
 const registration = await navigator.serviceWorker.register('/service-worker.js');
 console.log('Service worker registered', registration.scope);
 } catch (err) {
 console.error('Could not register service worker', err);
 }
}

function submitWorkerTask(task) {
 return navigator.serviceWorker.ready.then(function(req) {
 return new Promise(function(resolve, reject) {
 const channel = new MessageChannel();
 channel.port1.onmessage = function(event) {
 if (event.data.error) {
 reject(event.data);
 } else {
 resolve(event.data);
 }
 };
 req.active.postMessage(task, [channel.port2]);
 });
 });
}

Page !5

https://extract.autodesk.io/
https://forge.autodesk.com/en/docs/viewer/v2
https://forge.autodesk.com/en/docs/model-derivative/v2/developers_guide/overview
https://github.com/petrbroz/forge-disconnected
https://github.com/petrbroz/forge-disconnected
https://forge-offline.herokuapp.com/
http://expressjs.com/
https://github.com/petrbroz/forge-disconnected/blob/master/public/javascript/main.js
https://github.com/petrbroz/forge-disconnected/blob/master/public/service-worker.js
https://github.com/petrbroz/forge-disconnected/blob/master/public/service-worker.js
https://github.com/petrbroz/forge-disconnected/blob/master/public/javascript/main.js

!

The submitWorkerTask function is used to communicate 3 particular types of tasks to the service
worker:

• requesting a list of cached URLs (used when updating the UI, to detect which models have
already been cached)

• requesting a specific URN to be cached
• requesting a specific URN to be removed from cache

public/service-worker.js is where the magic happens. The code handles various events from the
service worker lifecycle explained earlier. On the install event, we cache the known assets and
APIs, and we also use the built-in self.skipWaiting() function to ask the browser to activate our
worker as soon as possible, without waiting for older workers to finish their work.

async function installAsync(event) {
 self.skipWaiting();
 const cache = await caches.open(CACHE_NAME);
 await cache.addAll(STATIC_URLS);
 await cache.addAll(API_URLS);
}

On the activate event, we claim control of all instances of our web application potentially running
in different browser tabs.

async function activateAsync() {
 const clients = await self.clients.matchAll({ includeUncontrolled: true });
 console.log('Claiming clients', clients.map(client => client.url).join(','));
 await self.clients.claim();
}

When intercepting requests via the fetch event, we reply with a cached response if there is one.
One exception is the GET /api/token endpoint. Since our access token has an expiration time, we
try to get a fresh token first, and only fall back to the cached one if we don't succeed.

async function fetchAsync(event) {
 // When requesting an access token, try getting a fresh one first
 if (event.request.url.endsWith('/api/token')) {
 try {
 const response = await fetch(event.request);
 return response;
 } catch(err) {
 console.log('Could not fetch new token, falling back to cache.', err);
 }
 }

 // If there's a cache match, return it
 const match = await caches.match(event.request.url, { ignoreSearch: true });
 if (match) {
 // If this is a static asset or known API, try updating the cache as well
 if (STATIC_URLS.includes(event.request.url) || API_URLS.includes(event.request.url)) {
 caches.open(CACHE_NAME)
 .then((cache) => cache.add(event.request))
 .catch((err) => console.log('Cache not updated, but that\'s ok...', err));
 }
 return match;

Page !6

https://github.com/petrbroz/forge-disconnected/blob/master/public/service-worker.js

!

 }

 return fetch(event.request);
}

Finally, using the message event we execute "tasks" from the client.

async function messageAsync(event) {
 switch (event.data.operation) {
 case 'CACHE_URN':
 try {
 const urls = await cacheUrn(event.data.urn, event.data.access_token);
 event.ports[0].postMessage({ status: 'ok', urls });
 } catch(err) {
 event.ports[0].postMessage({ error: err.toString() });
 }
 break;
 case 'CLEAR_URN':
 try {
 const urls = await clearUrn(event.data.urn);
 event.ports[0].postMessage({ status: 'ok', urls });
 } catch(err) {
 event.ports[0].postMessage({ error: err.toString() });
 }
 break;
 case 'LIST_CACHES':
 try {
 const urls = await listCached();
 event.ports[0].postMessage({ status: 'ok', urls });
 } catch(err) {
 event.ports[0].postMessage({ error: err.toString() });
 }
 break;
 }
}

async function cacheUrn(urn, access_token) {
 console.log('Caching', urn);
 // First, ask our server for all derivatives in this URN, and their file URLs
 const baseUrl = 'https://developer.api.autodesk.com/derivativeservice/v2';
 const res = await fetch(`/api/models/${urn}/files`);
 const derivatives = await res.json();
 // Prepare fetch requests to cache all the URLs
 const cache = await caches.open(CACHE_NAME);
 const options = { headers: { 'Authorization': 'Bearer ' + access_token } };
 const fetches = [];
 const manifestUrl = `${baseUrl}/manifest/${urn}`;
 fetches.push(fetch(manifestUrl, options).then(resp => cache.put(manifestUrl, resp)).then(() =>
manifestUrl));
 for (const derivative of derivatives) {
 const derivUrl = baseUrl + '/derivatives/' + encodeURIComponent(derivative.urn);
 fetches.push(fetch(derivUrl, options).then(resp => cache.put(derivUrl, resp)).then(() => derivUrl));
 for (const file of derivative.files) {
 const fileUrl = baseUrl + '/derivatives/' + encodeURIComponent(derivative.basePath + file);
 fetches.push(fetch(fileUrl, options).then(resp => cache.put(fileUrl, resp)).then(() => fileUrl));
 }
 }
 // Fetch and cache all URLs in parallel
 const urls = await Promise.all(fetches);
 return urls;
}

async function clearUrn(urn) {
 console.log('Clearing cache', urn);
 const cache = await caches.open(CACHE_NAME);
 const requests = (await cache.keys()).filter(req => req.url.includes(urn));

Page !7

!

 await Promise.all(requests.map(req => cache.delete(req)));
 return requests.map(req => req.url);
}

async function listCached() {
 console.log('Listing caches');
 const cache = await caches.open(CACHE_NAME);
 const requests = await cache.keys();
 return requests.map(req => req.url);
}

And that's pretty much it. If you want to see this code in action, head over to https://forge-
offline.herokuapp.com with your favorite (modern) browser, open the dev. tools, and try caching on
of the listed models using the ☆ symbol next to their title.

For a video of this code in action - click on the youtube video here: https://www.youtube.com/
watch?v=JGLytRddYiw

Page !8

https://forge-offline.herokuapp.com/
https://forge-offline.herokuapp.com/

