Advance Steel for BIM: Seamless Workflow from Design to Fabrication

Deepak Maini
Cadgroup Australia

Learning Objectives

- Learn how to export a Revit Structure model and import it into Advance Steel
- Learn how to create automated steel connections between the members imported from Revit
- Learn how to generate automated fabrication drawings and NC files
- Learn how to use Sync to review and import any Revit changes into Advance Steel or validate Advance Steel model in Revit

Description

To maintain competitive advantage, more and more structural engineers are trying to find a way to capitalize on their Building Information Modeling (BIM) data for steel detailing and fabrication. This class will explore how Advance Steel detailing software is proving to be the missing link that lets structural engineers capitalize on their Revit Structure models for steel detailing and fabrication. You will also learn how to use Connection Vault in Advance Steel to create automated steel connections on structural members imported from Revit software. You will then learn how to create the automated fabrication and erection drawings and NC files. This class will also show how the bidirectional sync between Revit and Advance Steel lets you bring any Revit changes into Advance Steel software or validate Advance Steel models in Revit software.
Speaker

Deepak Maini a qualified Mechanical Engineer with more than 20 years of experience working in the design industry. Currently working as the National Technical Manager - Named Accounts with Cadgroup Australia, Deepak is also the author of the Up and Running with Autodesk Navisworks, Autodesk Navisworks 2020 for BIM/VDC Managers, and Up and Running with Autodesk Advance Steel series of textbooks.

Deepak is a regular speaker at Autodesk University in Las Vegas USA and was awarded as the Best Speaker in the Instructional Demo category two years in a row at AU Las Vegas 2018 and 2017. He was also recently voted as the Best Speaker at the Bluebeam XCON 2019 conference in Washington DC. Additionally, he is among the Top Speakers at various BILT conferences in ANZ and Asia. He is also a guest lecturer at the University of Technology Sydney (UTS) and the University of New South Wales (UNSW), two of the biggest universities in Australia.
Introduction to Autodesk Advance Steel

Autodesk Advance Steel is purpose-built software for structural engineers and steel detailers. Running on the AutoCAD platform, this software caters to the needs of the BIM and Plant/Mining industries by providing specialized tools to automate the process of creating complex structural models and connections. It also increases the user productivity by automatically generating detailed fabrication and shop drawings, reports, bill of materials (BOM), and NC/DSTV files for steel cutting.

Figure 1 shows a part of the Elevation Tower created for the mining industry.

Figure 1: Structural steel model created for the mining industry
While working with Building Information Modeling (BIM) data, Autodesk Advance Steel has bidirectional workflows with Autodesk Revit. Using the Autodesk Advance Steel add-in for Autodesk Revit, you can directly import Autodesk Revit models into Autodesk Advance Steel for creating connections and generating detailed documentation. You can also import Autodesk Advance Steel models into Autodesk Revit for design verification. Figure 2 shows a structural steel model created in Autodesk Revit and imported into Advance Steel for detailed fabrication drawings. The model used in the class demonstration was a section of this model.

Figure 2: A structural steel model created in Autodesk Revit and imported into Advance Steel
Downloading the Advance Steel 2020 Extension for Revit

To be able to export the Revit Structure model for importing in Advance Steel, you need to download and install the Advance Steel Extension. The following section shows how to download this extension.

1. In your web browser, enter https://manage.autodesk.com and login using your Autodesk Subscription credentials.

2. Scroll down to the Revit section and expand it, as shown in Figure 3.

3. Click on downloads under the 2020 version area, as shown in Figure 4; the Revit window is displayed with the downloads, serial numbers, and updates & add-ons tabs.

4. Click on the Updates & Add-ons tab, labeled as 1 in Figure 5.
5. From the right of the **Advance Steel Extension for Revit 2020** add on, click **Browser download**, labeled as 2 in Figure 5; the add-in will start to download.

6. After the add-in is installed, it will be listed in the **Add-Ins** tab.
Exporting Revit Structure Models

Now that you have installed the Advance Steel add-in, you are ready to export the Revit Structure model to be imported into Advance Steel. The recommended format for exporting the Revit Structure model is SMLX format (Steel Markup Language). However, it is a good idea to first check the export settings to make sure the right content gets exported. The following section explains how to configure the export settings and then export the model.

1. From the Add-Ins tab > Advance Steel Extension flyout, click Settings; the Settings dialog box is displayed, as shown in Figure 6.

![Figure 6: The Settings dialog box]

2. Select the Export grids tick box if you want to export the grids also.

3. Click OK in the dialog box.

Tip: Before exporting the model, you need to find if you want to export the entire model or the selected items from the model. If you want to export the entire model, you do not need to select anything before exporting. The entire model will be automatically selected for exporting. However, if you want to export only some items from the model, you need to select those items first from the Autodesk Revit window before you invoke the Export tool.

4. From the Add-Ins tab > Advance Steel Extension flyout, click Export; the Export utilities dialog box is displayed, as shown in Figure 7.
5. By default, the **Advance export** radio button is selected. This will ensure the model is exported in the SMLX format. Click the **OK** button; the **Save As** dialog box is displayed prompting you to specify the name and location of the SMLX file.

6. Specify the name and location of the SMLX file and then click **Save** in the dialog box.

Importing the Model into Advance Steel

Once you have exported the SMLX file from Autodesk Revit, you are ready to import it into Advance Steel. The following section shows how to do that.

1. Start Autodesk Advance Steel.

2. From the **Export & Import** ribbon tab > **Revit** ribbon panel, click **Import**; as shown in Figure 8.

Figure 7: The **Export Utilities** dialog box

Figure 8: Importing the SMLX file from Autodesk Revit
3. In the **Open** dialog box, browse and select the SMLX file that was saved from Autodesk Revit. If the mapping of structure members or material is required, a dialog box will be displayed, as shown in Figure 9.

![Material Conversion Dialog Box](image)

Figure 9: The Material Conversion Dialog Box

4. Once the section and material mapping is completed, the model will be opened in Advance Steel, as shown in Figure 10.
Figure 10: Autodesk Revit structure model opened in Advance Steel
Adding Connections to the Steel Model

In Advance Steel, the Connection Vault palette provides you various connection types to join structural members together. This palette comprises of four sections. Various types of connections categories are organized in the toolbar format on the left side of this palette, labeled as 1 in Figure 11. When you pick a tool button for a connection category, all the available connection types for that category are displayed in the middle section of this palette, labeled as 2. The upper right section, labeled as 3, shows the preview of the connection type. The lower right section, labeled as 4, shows the selection order, a brief description of the selection order, profiles that could be selected and the connection type.

FIGURE 11: THE CONNECTION VAULT
Connection Types

In Advance Steel, you can create various types of connection between the steel members. Some of these are listed below:

Base plate Joint
This type of joint is used to insert a base plate at the bottom of a vertical or inclined column. This joint type allows any section type to be used as the column. Figures 12 and 13 show various types of base plate joints.

![Figure 12: The Base Plate Joint](image1)

![Figure 13: Base Plate Joint with Stiffeners](image2)
Knee of frame bolted, with haunch Joint
This type of joint is created between the flange of a column and a beam and a haunch is created from the beam or from the plates. Figures 14, 15 and 16 show various types of joints of this category.

Figure 14: Joint with additional rafter aligned with the parent rafter

Figure 15: Two columns of bolts inserted on each side of the rafter
Clip Angle Joint
This type of joint is used to connect two beams or a beam and a column by inserting a clip angle between the two. You can use equal angles or unequal angles to insert. You can also decide to bolt the sections to the angles or weld them. Figure 17 shows the clip angle joint with cleats inserted on both sides.
Single Side End Plate
This joint is used to connect a main beam or column to a secondary beam using an end plate. This end plate will be welded to the secondary beam and bolted to the main beam or column. Figure 18 shows this type of joint.

![Figure 18: Single Side End Plate Joint with Six Vertical Bolts in Group 1 and Center Bolt Layout](image)

Shear Plate Joint
This is one of the most commonly used joints and is used to connect a main beam to a secondary beam using a plate. This plate will be welded to the main beam and bolted to the secondary beam. Figures 19 and 20 show this type of joint.

![Figure 19: Shear Plate Joint with a Rectangular Plate, Three Numbers of Horizontal Bolts and Two Vertical Bolts in Group 1](image)
FIGURE 20: SHEAR PLATE JOINT THAT USES A PLATE WITH FLANGE ON BOTH SIDES, ONE NUMBER OF VERTICAL BOLT, AND THREE HORIZONTAL BOLTS IN GROUP 1
Adding Stairs and Handrails to the Steel Model

In Advance Steel, you can add various types of stairs and handrails and customize them to meet your requirements. You can even define the handrail post connection as welded or bolted. Figure 21 shows stairs with handrails that have looped ends and post bolted. Figure 22 shows stairs with handrails that have loop return ends and posts welded. Note that in both these figures, the handrails on the two sides of the stairs are created separately.
Figure 22: Handrails with loop return ends
Generating Fabrication Drawings

In Advance Steel, you can generate the assembly drawings, fabrication drawings, or erection drawings from parts or assemblies. This can be easily done using **Drawing Processes** palette shown in Figure 23.

![Figure 23: The Drawing Processes palette to generate drawings](image)

All the generated drawings are available in the **Document Manager** shown in Figure 24.
Figure 24: The Document Manager

Warning: If this option is not selected, then the drawing status is not correctly shown unless a "Status check" is done.
Synchronizing Advance Steel Model with Autodesk Revit Changes

A very common issue that the structure detailers face is the Structural Engineers regularly modifying the original structure model. To cater to that issue, Advance Steel allows you to synchronize the Autodesk Revit model and import all the changes into your Advance Steel model, still maintaining all the connections in the model. To do this, simply export the modified Autodesk Revit model using the process shown in the earlier section of this handout. The following section shows how to synchronize the Advance Steel model.

1. In Advance Steel, from the Export & Import ribbon tab > Revit ribbon panel, click Synchronize, as shown in Figure 25.

2. In the Synchronization dialog box, click the Load button and load the modified SMLX file that was exported from Autodesk Revit after modifying the model.

3. Expand the dialog box by clicking on the Filter button on the lower left corner, as shown in Figure 26.

 Tip: You can right-click on the Status column in the dialog box and select additional columns. For example, in Figure 26, the Section and Section – File columns are added using this method.
Tip: It is extremely important to understand what are the changes listed in the dialog box. Sometimes, the changes are only showing the beam cut created in Advance Steel due to the joints that were created. However, if the **Change** column shows **Section**, in addition to the other changes, it means the section of the member has been changed, as shown in the **Section – File** and **Section** columns in Figure 26.

4. It is important to understand the color-coding of the items listed in the **Model object** column. The elements listed in the Blue color are modified, the elements listed in Red color are deleted, and the elements listed in Green color are new elements that were added. Select the **Status** tick box of all the changes you want to import and then click the **Apply All Actions** button in the dialog box; the Advance Steel model will be updated with the changes.

Figure 26: The Synchronization Dialog Box Showing All the Changes
Validating Autodesk Revit Model against Advance Steel Model

The Structural Engineers are very particular about making sure the fabricated model has all the right sections that they used in the Autodesk Revit structure model. To make the process easier for the Structural Engineers, the Advance Steel add-in that was installed in Revit allows you to synchronize the Advance Steel model with the Revit model for design validation. The process of doing that is discussed next.

1. In Autodesk Revit, from the **Add-Ins** ribbon tab > **Advance Steel Extension** flyout, click **Synchronization**, as shown in Figure 27.

2. In the **Synchronisation** dialog box, click the **Load** button and load the SMLX file that was exported from Advance Steel.

3. Expand the dialog box by clicking on the **Filter** button on the lower left corner. Clear the filter of the changes you do not want to see. For example, Figure 28 only shows the appended elements.
4. Select the status of all the elements you want to import into the Autodesk Revit model and click **Apply All Actions**; all the changes will be applied to the Autodesk Revit model.
Importing Autodesk Advance Steel Connections into Autodesk Revit Structure Model (For LOD 400 or above Jobs)

If you are a Structural Engineer working on LOD 400 or above jobs, you need to deliver fabrication level structural model. This model includes detailing, fabrication, assembly, and installation information. However, there are only a certain BIM software capable of delivering the fabrication level structural model. As a result, generally the structural detailers working under the fabricators are capable of working on the fabrication level model.

In recent years, there has been a shift in this industry and now certain structural engineers are starting to deliver the LOD 400 model. Especially, the projects in high seismic regions require the structural engineer of record to be involved in the connection designs and to give guidance to the fabricator. These engineers are generally who will take it to LOD 400. To make it easier for those structural engineers, Autodesk Revit 2018 allows you to create steel connections inside Revit. Alternatively, you can import the structural connections from Advance Steel straight into Autodesk Revit.

Loading Steel Connections for use inside Revit

As mentioned above, you can create steel connections inside Revit. However, these connections are to be loaded in the project to be able to use them. The following is the procedure for importing steel connections from Advance Steel.

1. Start Autodesk Revit 2020 and open the structural model in which you want to add steel connections.

2. From the Steel tab, click on Connection Settings, as shown in Figure 29; the Structure Connection Settings dialog box will be displayed.

 ![Figure 29: Invoking the Structural Connection Settings dialog box in Autodesk Revit](image)

 Tip: Although this dialog box displays a number of connections in the left pane, these connections will not be available for you to add to the structural sections. To make them available for use, you need to load them in the current file by double-clicking on them. However, if you are importing these connections from Autodesk Advance Steel, then you do not have to manually load them first. They will be automatically loaded as part of the import process.
3. In the **Available Connections** area of the dialog box, double-click on the connections that you want to add to the structural model; the connections will be displayed in the **Loaded Connections** area, as shown in Figure 30.

![Structural Connection Settings dialog box](image)

Figure 30: The connection loaded for use

4. The loaded connections can now be inserted to the structural sections using the **Structure** ribbon tab > **Connection** ribbon panel > **Connection** tool, which is discussed in the next section.
Inserting Steel Connections in the Autodesk Revit Structure Model

After you have selected the connections you want to use in the dialog box shown in Figure 30 above, you are ready to insert these connections. The following is the procedure for doing this.

1. Select one or more steel sections to insert the connection and then from the Steel ribbon tab > Connection ribbon panel, click the Connection button, as shown in Figure 31. This figure also shows the column selected to insert the base plate connection.

 ![Figure 31: Selecting the column to insert the base plate connection](image)

2. From the Properties window, select Generic Connection > Base Plate, as shown in Figure 32.

 Tip: Notice that although there is a base plate connection inserted at the bottom of the column, you cannot see it. This is because the visibility of the connection elements is turned off by default. The next section will explain how to turn on the visibility of the connection.
3. In the Properties window, click the Edit button on the right of Modify Parameters to modify the parameters of the connection.
Turning on the Visibility of the Connection Elements

As mentioned above, by default, the display of connection elements is not turned on in Autodesk Revit. You will now turn on the visibility of these elements.

1. Type **VG**; the **Visibility Graphic Override for 3D View** dialog box is displayed.

2. Expand the **Structural Connections** category and select all the items in that category, as shown in Figure 33.

![Figure 33: Turning on the visibility of the connection elements](image)

3. Click OK in the dialog box.

4. Notice that only the connection symbols are displayed in the model, as shown in Figure 34. However, the connection elements are still not displayed. This is because to display the connection elements, you need to change the **Detail Level** to **Fine**.
5. Change the **Detail Level** of the model visibility to **Fine**; all the connection elements are displayed in the model.

6. Navigate close to various joints and notice the connection elements in the model. Figure 35 shows a zoomed in view of the model showing various connections.
FIGURE 35: THE CONNECTION ELEMENTS DISPLAYED AFTER TURNING THEIR VISIBILITY ON
Importing Steel Connections from Advance Steel into Autodesk Revit

As mentioned above, you can also import steel connections directly from the Advance Steel model into Autodesk Revit. The process of doing that is discussed next.

1. In Autodesk Revit, from the Add-Ins ribbon tab > Advance Steel Extension ribbon panel, click Synchronization, as shown in Figure 36.

![Figure 36: Invoking the Synchronization dialog box](image)

2. In the Synchronisation dialog box, click the Load button and load the SMLX file that was exported from Advance Steel model that had all the connections.

3. Expand the dialog box by and clear the filter of all the changes, except Connections and Appended, as shown in Figure 37.
4. Select the status of all the connections and click **Apply All Actions**; all the changes will be applied to the Autodesk Revit model. Figure 38 shows the zoomed in view of the model with some connections.

Tip: Remember to turn on the visibility of the connection elements, as discussed in the previous section, to be able to view the connections in the model.
Figure 38: The zoomed in view of the Autodesk Revit model with connections.