

Page 1

[SD468797-L]

The Cross-Platform Revit: Sharing Code with Plug-Ins,
Dynamo, and Forge
Thiago Almeida
Blackbird Industries

Eduardo Thiesen
Onbox

Description

The software industry has changed quite a lot recently; Autodesk is heavily investing in porting
their most important packages to be accessible in the cloud. Revit software, for instance, can
run as a part of the Forge platform. Microsoft is investing tremendously in its Dotnet platform
development (which was rewritten from scratch to be open source and modular). When dealing
with Revit API development, however, we often see monolithic apps that directly couple
modules and components like the UI layer to gather input, introducing several technical
challenges. Trying to manage and scale this type of codebase is frustrating and time
consuming, but it doesn’t have to be. In this lab, you will discover a free and open-source
framework that helps you quickly prototype Revit applications, while providing you with an easy
way to develop modular code that can be portable to multiforms of Revit environments, like add-
ins, Dynamo, and even the Forge Design Automation API.

Speaker(s)

Thiago Almeida has a Bachelor Degree in Civil Engineering and in Product Design. Technician
Degree in Software Analysis. Strong knowledge of engineering, mathematics and Autodesk
products including official Autodesk certifications on Revit Architecture, Revit Structure, Revit
MEP and 3d Studio Max. For the past 7 years started to dive into the Revit API to explore
opportunities and to leverage customizable Building Information Modeling workflows for clients
and partners, resulting in 6 products running in production to thousands of active users.

Eduardo Thiesen has recently acquired his bachelor's degree in civil engineering. Started
working with the Revit API in 2018 and has been working with Design Automation for Revit
since it’s beta release. He is responsible for the integration between Shedmate and Revit,
allowing for material takeoffs, fabrication drawings and ready for use drawing detailing to be
generated from scratch on the cloud.

Learning Objectives

• Create structured and modular code using the inversion of control principle.

• Share data specific code between different programming languages

• Share nonspecific code between different environments like desktop, cloud and
even front-end web

• Share Revit-specific code between cross-Revit environments like addi-ins,
Dynamo, and Design Automation

Page 2

In this lab you will go through the entire process of creating a Revit
application, a Dynamo package and a Design automation package using a
modular and scalable approach. The following images show all different
implementations working.

Dynamo

Page 3

Revit Application

Page 4

Angular web page hooked to Design Automation

Page 5

Introducing the Onbox framework

Onbox is a free and open source framework to help you build modern cross platform Revit
applications in a similar fashion of Angular and ASP.Net core.

The full documentation can be found at https://engthiago.github.io/Onboxframework.docs\

Getting Started – Creating a monolithic Revit application

We will start by creating a simple Revit application using the framework and move on to a more
modular approach later.

1. Download and Install Visual Studio Templates.

Download the template files at https://github.com/engthiago/Onboxframework.docs/releases.

Then unzip the contents of the folder in %userprofile%\Documents\Visual Studio
20**\Templates folder.

2. The resulting folder structure will be something like this for the “ProjectTemplates” folder:

Page 6

3. Launch Visual Studio and click on “Create a new project”.

4. On the Platform drop down menu, choose Revit and then pick “Onbox MVC – APP".

Page 7

5. Type your project name and click “Create”.

Launch your application

6. Check your Revit installation folder, if it is on the default C:\Program

Files\Autodesk\Revit folder, move on to the next step. Otherwise, go to “Project

Properties => Debug” and change the path to your Revit install location.

Page 8

7. Choose a Revit version on the Solution Configuration Drop Down menu and hit “Start”.

First build troubleshooting

 Visual Studio might complain when you first try to build your application,
this happens because of a bug on PropertyChanged.Fody when
referenced by NuGet. If you get build errors in the previous subsection,
go to “Build => Clean Solution” and try to run the solution again. Once the
packages are downloaded you should not have this issue anymore.

Page 9

8. Accept the loading of the Addin.

9. After launching Revit, open or create a project and you will see a new Ribbon tab with

two buttons:

10. Clicking in the button “Hello WPF” will show this dialog:

Congratulations! You have your application up and running.

Page 10

Dependency Injection

Dependency Injection is a technique based on the inversion of control principle, where one
object supplies the dependencies of another object. It allows us to abstract the creation of types
from the places where these types will be consumed, that way you can modify what type will be
created and how it will be created, without requiring you to refactor most of your code. With that
we can write cleaner and more loosely coupled code.

Please note that explaining Dependency Injection in depth is outside the scope of this
presentation, so we will only go through some of its concepts and how they are applied in the
framework.

Class Dependencies

Let’s say we have a class that will perform operations on grids, we’ll name it GridService, and
that this class will have a method responsible for deleting all grids within the project. Before the
grids can be deleted we need to collect them, for that we will use another class, that we’ll call
Collector. So we can say that GridService depends on the Collector class.

Here is what it would look like in code:

GridService
Class

Collector

Class

Page 11

Class Decoupling

Notice that we need to instantiate the collector class inside the DeleteGrids method. Let’s say
we need to add another argument to the Collector constructor, you could just edit the class and
change the instatiation manually. Now, imagine this class is being used in dozens of methods
and classes, this would become a maintenance nightmare really quickly.

We solve that by applying class decoupling. The first step is to move the creation of the collector
to outside the GridService, in this case we will have a field in the GridService class that will hold
an instance of the Collector. Then we create a constructor to take the Collector as an argument
and store it locally. Like so:

In this example the control of the class has been inverted, because it has no responsibility to
instantiate its dependency, the Collector. We have also gone one step further, by swapping the
Collector type with an abstraction, that way we can use different types of Collectors and pass it
in the GridService if we need to, without having to go change anything inside it.

Page 12

Next, we’ll take a look at how these classes will be consumed:

Class Hirearchy

The previous example may seem good enough, but the truth is the GridService is a very simple
class, let’s take a look at a more complex situation, more similar to real world scenarios.

Page 13

In order to instantiate de DependentClass we would need the following code:

So in this situation the inversion of control just moved the problem, instead of solving it, since for
every DependentClass instance we would need to deal with all those constructors again. So,
how can we actually solve the problem?

IOC Container

One way to approach this issue is through the use of Inversion of Control containers. That way
we can ask the container to resolve the dependencies of a type, like this:

This single line of code will return an instance of the class, that could be a new instance or a
cached one, depending on the context of that container. But how does the container now how to
instantiate the classes, and whether it should be cached or not?

Containers have three main lifecycle phases: Register, where you tell the container how the
classes should be instantiated; Resolve, where it creates the instances, like in the example
above; and Dispose, which is self explanatory. Now that may seem very complex but the Onbox
Framework simplifies that process a lot, and that will be shown in the next section.

Page 14

Project Structure

Traditional Revit Application

Now let’s talk about a traditional Revit application. It has the application itself, which is
responsible for creating the ribbon UI and initialize any application logic, and is often used to
hold variables that need to be kept throughout its lifecycle. Then, it has a set of commands that
will execute some logic when the user interacts with them. The following is an example of a
Revit application class.

The issue with that approach is that any communication between the application and the
command is done in a manual way, you can store variables and tell the command to access
them in Revit, but there is no association between them.

Page 15

Now, let’s talk about the application inside the framework. It will, by design, have an uniquely
identified container attached to it, this is the container that the application owns and is the one
responsible for initializing and registering dependencies on it. Then it will have a set of
commands that will have a scoped version of the container attached to it, which is essentially a
copy of the application’s container.

The containers will be linked through a command class that references the application as its
parent. Let’s see how that works in code:

Note that we are inheriting from the RevitApp class, instead of the IExternalApplication
interface, and we have a ContainerProvider decorator, this is how we attach the container to the
specific application. Then, on the Startup method we can have a container injected for us, and
can start registering the dependencies that we need.

Now let’s take a look at the command class implementation. Again, you’ll see that we inherit
from the RevitAppCommand class and not IExternalCommand, and we have the injection of a
ContainerResolver on the executed method, these are the only differences we have from a
regular Revit command.

Page 16

A container resolver is designed to resolve any dependencies that where registered in our
container.

Page 17

Creating the Grid Generator

Here is a summary of the classes contained in our GridGenerator app. To see the entire code,
head to the github links below.

• https://github.com/engthiago/Onbox.GridGenerator.Monolithic - Monolithic version

• https://github.com/engthiago/Onbox.GridGenerator.Modular - Modular version

• https://engthiago.github.io/Onboxframework.docs/tutorials/1_guetstart.html - Framework
documentation.

• https://github.com/engthiago/Onboxframework.docs/releases - To download the
Framework’s Visual Studio templates.

Revit application

1. App.cs

This is the entry point of your application, here you will define the lifecycle hooks for creating the
app and integrating with Revit.

https://github.com/engthiago/Onbox.GridGenerator.Monolithic
https://github.com/engthiago/Onbox.GridGenerator.Modular
https://engthiago.github.io/Onboxframework.docs/tutorials/1_guetstart.html
https://github.com/engthiago/Onboxframework.docs/releases

Page 18

Models

2. GridInfo.cs

Represents grid information that will be displayed on the UI and used to calculate the position of
the Revit grids.

3. GridSettings.cs

Contains the default settings for the grids that will be generated.

Page 19

Services

Services are classes that should only contain methods and hold no state, properties or fields. It
will never be directly instantiated, only injected by the container. Also, its methods should never
receive other services, only data models, simple parameters or external references.

4. GridCollectorService.cs

Collects existing grids on the project.

5. RevitLengthConverter.cs

Holds all length dimension conversion methods.

Page 20

6. GridInfoFactory.cs

Responsible for creating instances of the GridInfo class.

Page 21

7. GridInfoService.cs

Calculates the parameters for each GridInfo.

Page 22

8. RevitGridService.cs

Converts information from Revit grids to GridInfo and manipulates existing Revit grids.

Page 23

Views

The main Onbox.MVC library is designed with Revit in mind but it can actually be used on any
regular Windows WPF application as it has no refence to Revit on its code. In the other hand
Onbox.MVC.Revit provides functionality specific Revit.

9. GridGeneratorView.xaml

Contains the UI for the view.

10. GridGeneratorView.xaml.cs

Code behind for the WPF view, ideally methods in this class should be events that will hook into
services for their functionality.

Resources

Contains all static resources of the project. Note that ribbon images need to contain two

versions with different dimensions, one with 16x16 pixels and one with 32x32, and follow the

naming convention found in the template examples.

Page 24

Commands

11. GridGeneratorCommand.cs

Page 25

Container Extensions

In order to make the code more modular you can create different container extensions that will
inject a specific part of the application logic.

12. GridGeneratorExtensions.cs

Registers all classes responsible for the grid generator, and the default grid settings to the
container.

13. UnitConverterExtensions.cs

Registers the RevitLengthConverter class to the container.

Page 26

14. ViewsExtensions.cs

Registers the MessageBoxService to the container. This service is included in the Onbox NuGet
packages.

Abstractions

The abstractions folder contains interfaces for the view and all services on the project. This is
very important for modularity and testability, since you can choose to inject different
implementations of the same interface depending on the context.

