Walk-in Slide: AU 2014 Social Media Feed

1. Click on the link below, this will open your web browser

http://aucache.autodesk.com/social/visualization.html

2. Use “Extended Display” to project the website on screen if you plan to work on your computer. Use “Duplicate” to display same image on screen and computer.
Modeling and Visualizing Geology Subsurfaces with AutoCAD Civil 3D Ready for BIM

Gary Morin
Technical Director
Linkedin: uk.linkedin.com/in/garymorin63
Class summary

Create and model geological data with the Geotechnical Module in AutoCAD Civil 3D software
Key learning objectives

At the end of this class, you will be able to:

- Import and create boring holes and surfaces
- Understand the principles of modeling geology surfaces
- Comprehend the use and role of Feature Lines and Break Lines in modeling geology
- Convert the subsurface data in AutoCAD Civil 3D solids ready for export
Import and Create Boring Holes and Surfaces
CSV Import

- File format rules:
 - Delimiters supported:
 - Comma (,)
 - Semicolon (;)
 - Colon (:)
 - Vertical Bar (|)
 - Tab
 - Decimal point
 - Must match the character used on the computer
Two Files

- Boring Locations
 - Location of each of the boring

- Boring Strata
 - Strata readings per individual borings
<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
<th>Mandatory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocationID</td>
<td>Location unique ID</td>
<td>Yes</td>
<td>BH0001</td>
</tr>
<tr>
<td>LocationType</td>
<td>Type of activity at location</td>
<td>Yes</td>
<td>RC</td>
</tr>
<tr>
<td>Easting</td>
<td>Easting or longitude of the location of hole</td>
<td>Yes</td>
<td>123456.4</td>
</tr>
<tr>
<td>Northing</td>
<td>Northing or latitude of the location</td>
<td>Yes</td>
<td>232467.3</td>
</tr>
<tr>
<td>GroundLevel</td>
<td>Ground level relative to datum of location or start of traverse</td>
<td>Yes</td>
<td>35.43</td>
</tr>
<tr>
<td>FinalDepth</td>
<td>Final Depth</td>
<td></td>
<td>8.37</td>
</tr>
<tr>
<td>Orientation</td>
<td>Orientation of hole (degrees Clockwise from north)</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Inclination</td>
<td>Inclination of hole (measured positively down from horizontal in deg)</td>
<td></td>
<td>56.3</td>
</tr>
</tbody>
</table>
Example location file

<table>
<thead>
<tr>
<th>LocationID</th>
<th>LocationType</th>
<th>Easting</th>
<th>Northing</th>
<th>Ground Level</th>
<th>FinalDepth</th>
<th>Orientation</th>
<th>Inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH13</td>
<td>RC</td>
<td>348810.69</td>
<td>312280.95</td>
<td>57.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH9</td>
<td>RC</td>
<td>348801.13</td>
<td>312224.73</td>
<td>51.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH8</td>
<td>RC</td>
<td>348776.3</td>
<td>312250.22</td>
<td>53.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH11</td>
<td>RC</td>
<td>348749.43</td>
<td>312520.97</td>
<td>62.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH1</td>
<td>RC</td>
<td>348743.68</td>
<td>312482.79</td>
<td>61.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH19</td>
<td>RC</td>
<td>348740.94</td>
<td>312224.17</td>
<td>50.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH3</td>
<td>RC</td>
<td>348731.53</td>
<td>312327.8</td>
<td>57.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boring Strata

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
<th>Mandatory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocationID</td>
<td>Location identifier</td>
<td>Yes</td>
<td>BH001</td>
</tr>
<tr>
<td>DepthTop</td>
<td>Depth to the TOP of stratum</td>
<td>Yes</td>
<td>7.43</td>
</tr>
<tr>
<td>DepthBase</td>
<td>Depth to the BASE of description</td>
<td>Yes</td>
<td>8.12</td>
</tr>
<tr>
<td>GeologyCode</td>
<td>Geology code</td>
<td>At least one of these fields must exist</td>
<td>LC</td>
</tr>
<tr>
<td>GeologyCode2</td>
<td>Second geology code</td>
<td></td>
<td>SAND</td>
</tr>
<tr>
<td>LegCode</td>
<td>Legend code</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>
Example Strata file

LocationID, DepthTop, DepthBase, LegCode, GeologyCode, GeologyCode2
BH1, 0, 0.5, 101, TOPSOIL,
BH1, 0.5, 1.5, 102, MADE,
BH1, 1.5, 3, 803, SANDSTONE,
BH1, 3, 4.5, 801, SANDSTONE,
BH1, 4.5, 8, 803, SANDSTONE,
BH1, 8, 12, 803, SANDSTONE,
BH10, 0, 0.6, 101, TOPSOIL,
BH10, 0.6, 1.4, 102, MADE,
BH10, 1.4, 3.1, 201, CLAY,
BH10, 3.1, 5.8, 501, GRAVEL,
BH10, 5.8, 8.6, 803, SANDSTONE,
Data entry rules for strata

1. Each record must contain a valid location ID
2. Depth top and depth base must be specified for each record.
3. The strata bands should not overlap down an individual hole
4. Use consistent stratum names.
Exercise 1: Creating and validating the CSV files
Exercise 2: Importing CSV files into the Geotechnical Module
Understand the Principles of Modelling
Geology Surfaces
Take Time to Understand the Data

- Take time to review the geology in the data.
 - Look for where the geology appear and don’t appear
 - Look for the extents of a particular stratum
 - Look for anomalies in the data
- Use the 3D Boreholes to look at where the different geology appears around the site.
- Use the Plan log strips as an aid to the extents of geology when working in plan.
- Use profiles to highlight problems and discrepancies in the model.
Take Time to Understand the Data

- Use the 3D Boreholes
Take Time to Understand the Data

- Use the Plan log strips as an aid to the extents of geology when working in plan.
Take Time to Understand the Data

- Use Profiles to highlight problems and discrepancies in the model
Always open drawings from within AutoCAD Civil 3D.

DO NOT open drawings from File Explorer, as the Geotechnical Module will not start up correctly.
Exercise 3:
Using 3D Boreholes and Plan Log Strips
Exercise 4: Using Geotechnical Profiles to Check Data
Comprehend the Use and Role of Feature Lines and Break Lines in Modelling Geology
Multiple Surfaces

- 4 Surfaces to Model extents of outcrop
Use Feature lines with Unique Sites
Outline steps are:

- Draw a polyline representing the extents of the gravel.
- Convert the polyline into a feature line using the Sandstone - top as the elevation.
- Add the feature line as break lines to the four surfaces:
 - Sandstone - Top
 - Gravel – Base
 - Gravel – Top
 - Made – Base
Exercise 5: Using Feature Lines and Break Lines to Model Geology
Learn how to convert the subsurface data in AutoCAD software 3D solids ready for export
Turn off Solid History

At Command Prompt>
SOLIDHIST
Type 1 press <Enter>
Outline Steps

1. Extract triangles from top surface.
2. Extruded all triangles in the same direction.
3. Union all newly created solids into one single solid.
4. Repeat the above three steps for the base surface, triangles must be extruded in the same direction as above.
5. Use the subtraction command and subtract the base solid from the top solid.
6. The result is an AutoCAD solid representing the stratum.
Exercise 6
Creating a AutoCAD solid
New Solid Creation tool

- In Productivity Pack 2
For more information on Geotechnical BIM and free a gift (first come first served) visit:

Gary Morin

Keynetix Ltd
Booth 109
Session Feedback

- Via the Survey Stations, email or mobile device
- AU 2014 passes given out each day!
- Best to do it right after the session
- Instructors see results in real-time
Students, educators, and schools now have FREE access to Autodesk design software & apps.

Download at www.autodesk.com/education
Earn your professional Autodesk Certification at AU

Visit the AU Certification Lab