ES10029

Optimizing Structural Analysis with Dynamo

Emmanuel Weyermann, Software Architect
Autodesk

Learning Objectives

- Learn how to use Dynamo to create models in Robot Structural Analysis
- Discover the results-feedback loop
- Learn how to recognize possibilities and limitations of the Robot Structural Analysis package
- Gain beginning knowledge of how to extend the package using a simple Python script

Description

With the new Structural Analysis package for Dynamo software, you may optimize your existing structural workflows or invent some way of doing things. This lab will teach participants how to create structural model inside Robot Structural Analysis software using Dynamo software workflows, and how to set up the calculations model using dedicated nodes and run the computation. To complete the process, you will also learn how to interpret results to build optimized structural systems.

Your AU Experts

Emmanuel is the author of the Structural Analysis for Dynamo package.

He is Software Architect for Autodesk Simulation group since 2013.

Before that, Emmanuel worked as a software engineer on client/server applications, led customized projects for large engineering firms, and trained users to Robot Structural Analysis API.

Emmanuel has been the development lead for several initiatives at Autodesk, such as Revit Extensions, Code Checking, and the Falcon and Dalton projects for Revit.

Emmanuel holds a Master’s Degree in Structural Engineering and a Master of Science in Software Design and Development.
Table of Contents

Learning Objectives ... 1
Description ... 1
Your AU Experts .. 1
Introduction ... 4
 Autodesk Dynamo .. 4
 Difference between Autodesk Dynamo and Dynamo Studio .. 4
 Naming convention in this document ... 4
Get Started .. 4
Example 1 - A 2D frame ... 7
 Goals and objectives ... 7
 Create the geometry ... 7
 Create analytical bars .. 10
 Assign sections to analytical bars ... 12
 Assign supports to column base .. 15
 Create a live load .. 17
 Create a uniform member load ... 19
 Analyze the structure .. 21
 Get reactions results ... 22
 Get forces extreme results ... 23
Example 2 - A concrete reservoir .. 26
 Goals and objectives ... 26
 Create the geometry ... 26
 Create panels ... 30
 Assign thickness to panels .. 32
Example 3 - Python script to extend the Structural Analysis package 34
 Goals and objectives ... 34
 Get Started ... 34
 Start coding ... 35
Example 4 - A 3D frame .. 41
 Goal and objectives .. 41
 Expected output ... 41
 Main graph ... 42
Optimizing Structural Analysis with Dynamo

Introduction

Autodesk Dynamo

Autodesk gives an answer to this new challenge in our design world. This solution is called Autodesk® Dynamo (open source) and Autodesk® Dynamo Studio (Desktop Subscription). Dynamo lets designers and engineers create visual logic to explore parametric designs and automate tasks. It helps you to solve challenges faster by designing workflows that drive the geometry and behavior of design models. With Dynamo you will extend your designs into interoperable workflows for documentation, fabrication, coordination, simulation, and analysis.

Difference between Autodesk Dynamo and Dynamo Studio

<table>
<thead>
<tr>
<th>Difference between Autodesk Dynamo and Dynamo Studio Product</th>
<th>Dynamo</th>
<th>DYNAMO STUDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Source version available in products (i.e. Revit).</td>
<td></td>
<td>Standalone Polished version supported by Autodesk, working outside of Revit.</td>
</tr>
<tr>
<td>The open source technologies which represent Dynamo’s execution engine and graph UI built into Revit allowing better geometry. Allows you to add logic and behavior to Revit</td>
<td>All of the computational power and geometry tools of Dynamo Core. Aimed at the architect, engineer, or design professional who needs access to analysis linked with Dynamo.</td>
<td></td>
</tr>
<tr>
<td>No Support</td>
<td>Basic Support</td>
<td></td>
</tr>
<tr>
<td>Available online</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Click here</td>
<td>Click here</td>
<td></td>
</tr>
<tr>
<td>Freely Available in Product. A valid Revit license is needed.</td>
<td>New Desktop Subscription Offering</td>
<td></td>
</tr>
</tbody>
</table>

Naming convention in this document

- Dynamo nodes names will be in **Bold**
- Dynamo nodes fields will be in **Bold Italic**
- Field values will be in *Italic*

Get Started

The main objective here is to setup properly your machine to use the Structural Analysis for Dynamo package.

Here are first steps:

1. Start Dynamo and create a new project
2. Check if the Structural Analysis for Dynamo package version 0.2.2 is installed
3. If not, open the package manager and download the package

4. Some new nodes should be now available on the library
5. When done, open Robot Structural Analysis 2016
6. Start a Shell project
7. You are done
Example 1 - A 2D frame

Goals and objectives
The goal of this example is to learn how to create a simple structure in Robot Structural Analysis and access results inside Dynamo.

Dataset:
- 2DFrame\2DFrame_x.dyn

Create the geometry
In this section are described all steps to follow for building the model geometry inside Dynamo.

1. Add two Number Slider nodes.

2. Rename sliders to Height and Width.
3. Add a **Point.Origin** node. A point at (0,0,0) should be visible in Dynamo canvas.

4. Add three **Point.ByCoordinates** nodes.
5. Change sliders values to **Width** = 5 and **Height** = 3 and connect your nodes to obtain four points at (0,0,0), (0,0,Height), (0,Width,Height) and (0,Width,0). Four points should be visible in Dynamo canvas.

6. Add three **Line.ByStartPointEndPoint** nodes.
7. Connect Point.ByCoordinates nodes output to Line.ByStartPointEndPoint nodes to build three lines representing the frame. At this stage the initial model is ready.

Create analytical bars
In this section are described steps to convert the geometry available in Dynamo into bars in Robot Structural Analysis.

1. Add three AnalyticalBar.ByLine nodes.
2. Connect `Line.ByStartPointEndPoint` nodes outputs to newly created `AnalyticalBar.ByLine` nodes.

3. If Dynamo execution option is set to automatic, the frame should be created in Robot Structural Analysis.
4. Else, click run in Dynamo to generate the model in Robot Structural Analysis.
5. The structure maybe not visible. To fix this, make a right-click inside the canvas and call the contextual command “redraw”. The structure should be now visible.

Assign sections to analytical bars

In this section are described steps to assign to Robot Structural Analysis bars a specific section containing needed mechanical characteristics for analysis.

1. Add three `AnalyticalBar.SetSectionByName` nodes.

2. Connect the `AnalyticalBar.Byline` nodes output to newly created nodes input ports.
3. Find the **Section** UI nodes in the library under Model/Attributes/Bars.
4. Add it inside the canvas and connect it to the **name** port of the first. **AnalyticalBar.SetSectionByName** node.
5. Note that **Section** node exposes only sections available inside the opened document.

6. Create a **Code Block** by a double click inside Dynamo canvas and write “W 16x40”;
7. Connect this node to the **name** port of the second `AnalyticalBar.SetSectionByName` node.

8. Not all sections are loaded per default inside the opened document. Here is the way to fix that. Add the `Bars.LoadSections` nodes.

9. Add a **Code Block** node and write ("W 16x45"); to create a simple list of strings.

10. Connect the **Code Block** node to the **sectionToLoad** port of the `Bars.LoadSections` node and wire the output to the **name** port of the last `AnalyticalBar.SetSectionByName` node.
11. Check the Robot Structural Analysis project, sections should be now assigned to elements.

12. If sections are not visible, make sure you turn on the section shape visibility option.

Assign supports to column base

In this section are described steps to assign to Robot Structural Analysis nodes a specific support definition.

1. Add two `AnalyticalBar.StartNode` nodes and connect them to the outputs of the first and the last `AnalyticalBar.SetSectionByName` nodes.
2. Add two `AnalyticalNode.SetSupportByName` nodes and connect them to the outputs of the `AnalyticalBar.StartNode` nodes.

3. Find the `Support` UI node in the library under Model/Attributes/Nodes.
4. Add it inside the canvas and connect it to the `name` port of `AnalyticalNode.SetSupportByName` nodes.
5. Check out your model in Robot Structural Analysis.

Create a live load
In this section are described steps to create in Robot Structural Analysis nodes a live load case named AU2015.

1. Add a node `LoadCase.ByNatureAndType`.
2. Add a **CaseNature** UI node and connect it to the **caseNature** input port of the **LoadCase.ByNatureAndType** node.

3. Select **Live** in the comboBox.

4. Add a **CaseType** UI node and connect it to the **caseType** input port of the **LoadCase.ByNatureAndType** node.

5. Select **Simple** in the comboBox.
6. Add a **Code Block** (double click in Dynamo Canvas) and write “AU2015”;
7. Connect the **Code Block** to the **caseName** port of the **LoadCase.ByNatureAndType** node.

Create a uniform member load
In this section are described steps to apply uniform member loads in Robot Structural Analysis. These loads will be part of the load case AU2015.
1. Add a `UniformMemberLoad.ByBars` and connect the `loadCase` input port to the `loadCase` node output created previously.

2. Connect the node that provide the top beam as output to the `AnalyticalBars` input port.

3. Create a `Code Block` and write `-10000;`. This will represent a -10000 N magnitude force.
4. Connect the `Code Block` node to the `fz` input port of the `uniformMemberLoad.ByBars` nodes.
Optimizing Structural Analysis with Dynamo

Analyze the structure
To properly prepare all data for analysis, a list containing all objects that represents the calculation model should be created.

1. Add a node `List.Create` and connect all bars, nodes, loads and load cases.
2. Add an `Analysis.Calculate` node.
3. **Flatten** the previously created list and connect the output to elements input port of the `Analysis.Calculate`. As output of the calculation node, four lists should be created and should contain all bars, nodes and load cases objects. The panel list should be empty in this example.

![Diagram showing the process of flattening the list and connecting it to the Calculation node.](image)

Get reactions results

The goal here is to review reactions values for one support node.

1. Take the first item of the list of `AnalyticalNodes`.
2. Connect this node to a new `NodeReactions.GetValues` node.

![Diagram showing the process of connecting an Analytical Node to the NodeReactions.GetValues node.](image)
3. Take the first item of the **LoadCases** list.
4. Get **Ids** by adding a **LoadCase.ID** node.
5. Connect it to the **loadCase** input port.

Get forces extreme results

The goal of this section is to review extreme forces results all bars part of the model. The result option will be specified using a Force UI Node.

1. Add a **BarForces.GetExtremValuesAndPositionsByLists** node.
2. Connect the list of **AnalyticalBars** output of the calculation node to the input of the **BarForces** node.
3. Set load cases **Ids** to the result node by adding a **LoadCase.Id** node as proxy.
4. Add a **Forces** results option UI nodes.
5. Select **MY** in the combo box.
6. Connect it to the **name** input port of the results node.
7. Review results.

8. Compare results with Robot Structural Analysis.
Optimizing Structural Analysis with Dynamo
Example 2 - A concrete reservoir

Goals and objectives
The goal of this example is to learn how to parameterize and create a concrete reservoir in Robot Structural Analysis.

Dataset:
- ConcreteReservoir\ConcreteReservoir_x.dyn

Create the geometry
The model will consist on a disc to model the bottom slabs and a cylinder. Following section will explain how to do that.

1. Add two **Number Sliders** called Radius and Height.
2. Create a **Point.ByCoordinates** and connect the z input to the Height slider.
3. Create a **Point.Origin** node.
4. Create a list with these 2 points.
5. Add a **Circle.ByCenterPointRadius** node
6. Connect the **radius** input port to the Radius slider.
7. Connect the list of point to the **centerPoint** input port.
8. The output on these actions will be two circles.

9. Add a **Curve.DivideEqually** node, and use the circles list as input.
10. Add a **Code Block** with the value 2.
11. Wire the Code Block to the divisions input port. When this is done the output of the newly created node should be a list of arcs. First item of the list should contain two arcs representing the first circle, the second item should contain two arcs representing the second circle.

12. Add a List.Transpose node to transpose (swap lines/columns) the arcs list.

13. Add a Code Block node with the value Radius+5;
14. Connect the Code Block to the Radius slider.
15. Add a Circle.ByCenterPointRadius node.
16. Connect the *radius* input port to the **Code Block** newly created.

17. Add a **Surface.ByLoft** node.

18. Connect *crossSections* input port to the **List.Transpose** output. The output of this node will be 2 surfaces representing half of the cylinder.

19. Add a **Surface.ByPatch** to create a disc using the base circle.
Create panels
At this stage, the Dynamo model contains three surfaces and the goal will be to create in Robot Structural Analysis three panels representing these surfaces.

1. Add a node **AnalyticalPanel.Bysurface**.
2. Connect this node to the **Surface.ByPatch** output.

3. Add a node **AnalyticalPanel.Bysurface**.
4. Connect this node to the **Surface.ByLoft** output.

5. The model in Robot Structural Analysis will look like this. Here edges are discretized using 10 divisions as default value.

6. Add a **Code Block** with 25; as value.
7. Connect the **Code Block** to the **divisions** input ports of all **AnalyticalPanel.BySurface** nodes.
8. Panels edges in Robot Structural Analysis should be smoother.

Assign thickness to panels

1. Add two nodes `AnalyticalPanel.SetThicknessBy_Name`.
2. Add a **Thickness** UI node.
3. Connect this node to `AnalyticalPanel.SetThicknessByName` nodes.
4. Connect `AnalyticalPanel.BySurface` output to `AnalyticalPanel.SetThicknessByName` nodes.

5. Now in Robot Structural Analysis panels will have a thickness assigned and the model is ready.
Example 3 - Python script to extend the Structural Analysis package

Goals and objectives
When using UI nodes (supports, releases, thickness...) only elements defined in Robot Structural Analysis opened document are available in combo boxes.

A first solution to add a new support definition is to create it using Robot Structural Analysis user interface. A second one is to create a python script inside Dynamo and leverage Robot Structural Analysis API.

The expected goal of this exercise is to create a support with following definition.

![Support Definition](image)

Dataset:

- Python\CreateSupportDefinition.dyn

Get Started

1. Start Robot Structural Analysis.
2. Open or create a new document.
3. Create a new file in Dynamo.
4. Turn the execution mode to manual.
5. Search the Python Script node in the nodes library.
6. Add it into Dynamo canvas.
7. Add a new input port to it.
8. Make a right click on the **Python Script** node and select edit from the context textual menu

![Diagram showing the Python Script node with IN0, IN1, +, - and OUT connections.]

Start coding

1. The python editor should be now available.
2. Add following code to reference the API.
add Robot Structural Analysis API reference
from System import Environment
get the current user folder i.e C:\Users\<you>\AppData\Roaming
user = Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)
add the reference to the interop file shipped with the package
clr.AddReferenceToFileAndPath(user + r"\Dynamo\0.9\packages\Structural Analysis for Dynamo\bin\RSA\interop.RobotOM.dll")

3. Add needed import to be able to use objects exposed by the API.
add needed import to be able to use Robot Structural Analysis objects
from RobotOM import *
from System import Object

4. Assign your inputs to temporary variables.
get input data
the support name will go to the input[0]
nodeSupportName = IN[0]
the support data will go to the input[1]
nodeSupportData = IN[1]

5. Create needed objects for Robot Structural Analysis.

```python
# Connect to the running instance of Robot Structural Analysis
application = RobotApplicationClass()
# Get a reference of the current project
project = application.Project
# Get a reference of the current model
structure = project.Structure
# Get a reference of the label server
labels = structure.Labels
```

6. Create a new node support object.
create a new label of type support node with the name passed as parameter
out = labels.Create(IRobotLabelType.I_LT_NODE_SUPPORT, nodeSupportName)

assign the node support definition to the Robot Structural Analysis object
out.Data.UX = nodeSupportData[0]
out.Data.UY = nodeSupportData[1]
out.Data.UZ = nodeSupportData[2]
out.Data.RX = nodeSupportData[3]
out.Data.RY = nodeSupportData[4]
out.Data.RZ = nodeSupportData[5]

8. Store the definition of the support in open document.
store the new created label in the open document
labels.Store(out)
9. Return the name of the support as output of the python script.
#Assign the name to the OUT variable
OUT = out.Name

10. Accept all changes and the script is ready to be used.
11. Add a first Code Block with the name of the support “AU2015”;
12. Add a second Code Block with a collection of six true/false values (for example
 \{true,true,true,false,false,true\}); “true” value means that the direction is blocked and “false”
 means the direction is free.
13. Run the script and you should be done. A new support definition is now available in Robot Structural Analysis project.
Example 4 - A 3D frame

Goal and objectives
The goal of this exercise is to review a complex graph used to create a steel frame building fully parametrized.

Dataset:
- 3DFrame\3DFrame_0.dyn – Dynamo geometry graph.
- 3DFrame\3DFrame_1.dyn – Full graph (geometry and Robot Structural Analysis).
- 3DFrame*.dyf - a set of custom nodes.

Expected output
The list of parameters used to drive the model is the following:

- The building length.
- The building height.
- The building width.
- The number of frames.
- The truss height.
- The number of truss panels.
- The wind and snow load.

The output of the graph will be this model in Dynamo.

In Robot Structural Analysis, the goal is to get a model ready for analysis including sections, supports, releases and proper loading conditions.
Main graph
To solve this kind of problem, it is important to decompose the graph in several functional groups with their own responsibilities.

The usage of dynamo group and custom nodes to organize the code are highly recommended for better readability of the graph.

Another recommendations is to use some proxy nodes to organize data that should be passed along and reused.

On the next figure is shown the main graph for this exercise.

On it are few building blocks:

- Building parameters – a set of sliders to drive building dimensions.
- Create geometry – a set of nodes to build the Dynamo geometry.
- Load sections and self-weight – a set of nodes to load some sections in the opened document and create a dead load case containing the self-weight of the structure.
- Create Bars - a single node that will create the full geometry in Robot Structural Analysis.
- Assign Sections - a series of nodes responsible to assign the proper sections to bars in Robot Structural Analysis.
- Set Gamma - a set of nodes responsible to apply a rotation angle to bar in Robot Structural Analysis. This is used to rotate purlins (according the roof slope) and columns (90 °).
- Set Gamma - a set of nodes responsible to define column base as support properly.
- Set Releases – a set of nodes to apply proper release conditions to truss posts, diagonals and purlins.
- Calculate Loads – here are some math to get proper wind and snow loads magnitude for different typology of elements.
- Create Wind and Snow loads - a set of node to create wind and snow load cases and apply calculated magnitudes to proper elements.
Get Started
The base model is as following. This part of the graph is will take input parameters, create the geometry in Dynamo and create bars in Robot Structural Analysis.

Behind the Create Geometry group is a custom node (Frame Geometry.dyf). The output of this custom node is a list of Line objects. This list is passed to a first proxy node that act an accumulation node. The
main goal of the proxy node is to be sure that all requested sections are loaded in the project and self-weight load case created before moving forward.

The list of bars is next passed to an `Analyticalbars.ByLines` node that will create element in Robot Structural Analysis.

The output will be passed to a second proxy node that will organize Robot Structural Analysis bars by functional roles.

Note that the last item of this proxy node is a line. This data is passed here be able later to calculate the roof slope and the rotation angle to apply to purlins.

Sections and structure self-weight

To be able to use specific sections in Robot Structural Analysis, sections should be available. To overcome when in Dynamo context, the node `Bar.loadSections` could be used.

This node take as input a list of strings representing steel profile names. During execution, this node will try to load all sections specified and return the list of section names that have been successfully loaded in current document.

Note that sections should be present inside the active database with same name, main operation behind the scene is a string comparison (W12X14 name should be W 12x14 and HSS sections are classified under HSRO in Robot Structural Analysis).

The structure self-weight to the whole structure is created using a `LoadCase.ModelSelfWeight` node that take as input a `Dead` and `Simple LoadCase` and a `coefficient`. The `coefficient` value is 1.0 per default and could be changed according needs.
Assigning attributes
Sections are assigned to proper elements using `AnalyticalBar.SetSectionName` node. Then objects are passed along through proxy nodes to perform a re-classification.

For purlins and columns, a rotation angle is applied using `AnalyticalBar.SetGammaAngle` node.
To calculate the roof slope and apply proper rotation angle to purlins, the line representing the first top truss chord is used to do needed math.

“W” sections are used for columns. A 90 degrees rotation angle should be applied as well for these elements.

This action is performed by the Set Gamma.dyf custom node.

For trusses components and purlins, “Pinned-Pinned” release definition is used. To assign release conditions, the node AnalyticalBars.SetRealeaseByName is used.

This action is performed for the full model by the Set Releases.dyf custom node.
Column base should be defined as support and the "Fixed" support definition is used.

To assign support conditions to column, the start node of each column is picked, and the node `AnalyticalNode.SetSupportByName` is used.

This action is performed for the full model by the Set Supports.dyf custom node.
Loading conditions
Using the dynamo geometry, a wind pressure and snow load, it is possible to parametrize loading conditions. On this example, it is assume that the wind is perpendicular to the Y axis.

A group of nodes is responsible to calculate the distribution of load on elements, then these values are passed to `UniformMemberLoad.ByBars` nodes.

The load Calculation.dyn file contains the calculation of loads for each type of elements using influence surfaces. As output will be a list of values for wind loads and a for snow loads that should be applied to specific elements.
The load Wind Load.dyf file shows how uniform loads are created. For each typology of bars, a load will be applied. Note that the F_z value is a list and load are apply in the **Local** system of coordinates.

The content of the Snow Load.dyf file is similar except for the coordinate system of the load which is set to **GlobalProjected**.
Example 5 – Structural Analysis and Revit

Goals and objectives
When moving data from Revit to any structural analysis software, we are facing two main issues:

- Keeping both models synchronized
- Mapping the definition of a cross section from Revit (mainly from family type) into sections provided by the simulation product.

This example is a boilerplate script that reads an analytical model from Revit stick elements, converts his representation to analytical bars, then reads family type to get proper section and then assigns them to React Structures bar elements.

Dataset:

- Revit\Revit_frame_x.dyn
- Revit\Revit_frame.rvt

Get Started

1. Create a structure in Revit or open Revit_frame.rvt file. The model is a simple steel frame composed of 9 columns, 10 beams and 4 beams system.

2. Start Dynamo 0.9 from Revit Addins Ribbon tab.
3. Be sure that the Structural Analysis package is available, if not, download it.
4. Open React Structures and create a new project.
5. Open Revit_frame_0.dyn or create a script as described in the next image.
6. If you run this script in automatic, all family type used by family instance are loaded in React Structures.
7. The model geometry should be visible into the Dynamo canvas.
8. To create bars, few nodes are added to read Analytical model curves from the model. Note that only straight elements are supported here. Unfortunately each elements contain three curves and a bit of clean up should be done to get a single curve be element.

9. Connecting the start and end points of the filtered curved, bars could be easily created using AnalyticalBars.ByPoint node.

10. The next steps is to assign sections to bars using regular node.
11. To achieve a customized mapping, some additional nodes not present here should be added between `FamilyType.Name` and nodes consuming this `name` as input (`Bars.LoadSections` and `AnalyticalBar.SetSectionName`).

12. The model is now generated into React Structure.
13. If Dynamo is running in Automatic, any changes in the Revit model will be applied to React Structure model (location, dimensions, family types...).
Example 6 – Analytical Model and Mass Objects

Goals and objectives
Generally it is not possible to move in a generic way data from Revit to structural analysis software for elements that don’t host analytical model representation. The goal of this example is to learn how to create a simple graph to extract some data to Revit and pass them to React Structures.

Dataset:
- Revit\Revit_Massx.dyn
- Revit\Revit_Mass.rvt

Mass objects and Dynamo
1. Create a Mass object in Revit or open Revit_Mass.rvt file.
2. Start Dynamo 0.9 from Revit Addins Ribbon tab.
3. Be sure that the Structural Analysis package is available, if not download it.
4. Open Revit_Mass0.dyn or create a script as described in the next figure.

5. At this stage the Revit geometry is available in Dynamo and is ready to be shared.
6. Note that the last Dynamo node of this graph exposes a list of list of curves describing mass object faces.
Optimizing Structural Analysis with Dynamo

Passing data to React Structures
1. Add a node **AnalyticalPanel.ByCurves**.
2. Connect it to the **Surface.PerimeterCurves** output port.
3. Specify the number of **divisions** that will be used to make surfaces smoother during generation.
4. Assigned **thickness** to newly created panels.

5. At this stage six panels should be created in React Structures with appropriate thickness.
6. If Dynamo execution mode is set to automatic, any updates in Revit will be applied to the React Structures model.