Adding Intellect to Inventor with Intelligent Modeling

Jason Hunt
Designer IV, Group Lead
FS-Elliott Co., LLC

Kevin Smedley
CAD Manager
SPC Mechanical
About the Speakers

Jason Hunt (Speaker)

- NPD Lead Designer for a global centrifugal compressor manufacturer, FS-Elliott Co., that is headquartered outside of Pittsburgh, Pa.
- Based out of the Williamsville, NY office.
- Over 25 years of compressor design experience (Rotary and Centrifugal).
- Provides lead design services to current New Product Development (NPD) projects and helps drive current CAD standards and best practices in the NPD team.
- Third time presenting at AU and fourth time attending AU.
- Have been a member of AUGI® (NAAUG) since 2012.
About the Speakers

Kevin Smedley (Co-Speaker)

- Cad Manager for SPC Mechanical headquartered in Wilson, NC.
- Over 28 years of CAD and Management experience with multiple Autodesk products in the manufacturing and AEC environments.

Specialties include:

- CAD management
- Inventor 3D parametric modeling application
- Vault Professional software data management
- Revit & BIM
Your Instructor’s Schedule

Jason Hunt

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday 3:45 pm</td>
<td>Adding Intellect to Inventor with Intelligent Modeling</td>
</tr>
</tbody>
</table>

Kevin Smedley

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday 3:45 pm</td>
<td>Adding Intellect to Inventor with Intelligent Modeling</td>
</tr>
<tr>
<td>Wednesday 9:15 am</td>
<td>3D Standards – A Continuing Journey of Best Practices</td>
</tr>
</tbody>
</table>
Key Learning Objectives

- Explore using parameters and the available functions in Inventor to build intelligent models.
- Learn how to incorporate iLogic in your intelligent-modeling workflows.
- Discover the power of using Adaptivity in your designs.
- Learn how to use simplification to drive modular design.
Class summary

Today, we are going to learn about four techniques to do the following:

- Use parameters Drive a simple stool Design.
- Use iLogic and parameters together to generate new stool design variations.
- See how adaptivity can be used for conceptual stool design options.
- Simplification in the design process.
Utilizing Parameters to Create Intelligent Designs
Why Use Parameters?

Questions to Ask:
- Is the work repetitive?
- Is there a need or desire to improve consistency?
- Do you want to improve efficiency?
- Do you need to create many models in a short amount of time?

If you answered yes to any of the questions above, then using parameters to create intelligent designs should be an important facet of your design process.
Parameters Overview

Parameters are your “everyday” tool to drive intelligence in your designs.

- To access
 - “fx” button on the Quick Access Toolbar
 - “fx button on the Manage Ribbon.

Two Types of Parameters
- Model Parameters
- User Parameters
Model Parameters Overview

- Model parameters are automatically created.
- Model parameters have an ID as a name.
 - ID name starts at d0, then d1, d2, etc.
 - Ability to change the name of the parameter.
- Disadvantage in using model parameters is that they can be accidently deleted.
 - Formulas and Intelligence can be lost.
User Parameters Overview

Three Types of User Parameters

1. **Numeric**: Used typically to drive geometry and in formulas / equations.

2. **Text**: Some uses are to drive data on drawings or for assisting you in writing iLogic code.

3. **True / False**: Typically used with iLogic

Advantages

- Flexible
- Stronger than model parameters.
A Consumed by column has been added to the parameters table to make it easy to identify where a parameter is used.

By Features has been added to the parameter filter options.
Demo Time
Controlling a Stool with Parameters
Demonstration – Controlling a Stool with Parameters

The purpose of this demonstration is to show how you can apply parameters and functions to control the design of a stool.

We will do the following:

- Create User Parameters to control the stool height and seat diameter.
- Use a Trig Function to assist in the design.
- Push parameters to assembly members, from the assembly.
- Create a form to manipulate your design on the fly.
Incorporating iLogic into your Intelligent Modeling Workflows
Why use iLogic?

Questions to Ask:

- Is the work repetitive?
- Will automation save time, so a designer can focus on other tasks?
- Is there a need or desire to improve consistency?
- Do you want to improve efficiency?
- Does the data output need to be provided in a certain manner, every time?
- Do you need to create a lot of models in a short amount of time?

If you answered yes to any of the questions above, then using iLogic to automate your design should be an important facet of your design process.
iLogic Definition

What is iLogic?

- iLogic enables rule driven design that provides a simple way to capture and reuse your work. It allows the user to standardize and automate the design process.

- iLogic allows you to become a coding expert without having to learn much actual code.
What are iLogic Rules?
- A Visual Basic (VB.NET) program.
- Monitors and controls Inventor parameters, features, or components.

Rule Types
- **Internal Rules**: iLogic Rules saved within a document
 - Used on one part (local)
- **External Rules**: Saved on your local or network drive.
 - Used Globally
iLogic Code Snippets

What are Snippets?

- Shortcuts, for frequently used pieces of code.
 - Using snippets allows the user to insert them into your code that you would normally have to type in manually.
 - Using snippets also helps reduce the possibility of errors in your program, due to typographical errors.
- Snippets can be found in the area of the Edit Rule dialog box. This area features two tabs:
 - The **System tab** includes a set of predefined snippets, arranged by category.
 - The **Custom tab** allows you to add your own snippets, or create custom copies of System snippets.
Demo Time
Controlling a Stool Design with iLogic
Demonstration – Controlling a Stool Design with iLogic

The purpose of this demonstration is to show how you can utilize iLogic and parameters together to create a master assembly to generate an unlimited number of stool variations.

We will do the following:

- Create iLogic rules in each component in the “Stool” assembly to generate new models, based on the user inputs in the form.
- Create an iLogic Form to drive the design, via parameters and iLogic.
- Generate an iLogic rule in the Stool assembly to make and save the new stool design into a new folder, with the new components.
Incorporating Adaptivity in your Designs
Adaptive Design is a conceptual process that enables the creator to produce ideas and objects with more ease.

Adaptive Design is a method that lays the basis for the making of every object or system while adapting to the changes of the surrounding objects and/or systems.

Adaptive design techniques can assist in producing quick ideas, objects and/or systems.
Adaptive Methodologies

With Autodesk Inventor 2018, there are two main methodologies or techniques for Adaptive Designs:

- Adaptive Cross-Part Sketch Geometry
- Adaptive Parts and Features

Benefits:

- The techniques that you will learn can assist tremendously in producing components directly in relation to other components within an assembly and immediately reflect changes.
- Referencing of existing models or sub-assemblies keep you focused on your current idea.
Demo Time
Utilizing Adaptivity to Create Conceptual Stool Designs
Demonstration – Utilizing Adaptivity to Create Conceptual Stool Designs

The purpose of this demonstration is to show how you can utilize adaptivity to generate some conceptual features from furniture company “X” to design a new feature to be sold as an option.

We will do the following:

- Utilize adaptivity to generate two conceptual stool design options.
- See how the power of adaptivity can be used to generate conceptual options.
Simplification and Modular Design
Why Create a Modular Design?

- Multiple Designers / Engineers Working on The same Project.
- Multiple design options.
- Handle Design Scope Creep.
- Speed to market is crucial to meeting your goals.
Planning Ahead

The design process just doesn’t happen on its own, there must be a plan.

- Create a workflow diagram
 - Planning is the best use of an Engineer’s or Designer’s time.
 - Crucial to streamlining the design process.
 - A Work flow diagram is an excellent tool to help plan out the design.

The overall goal of this methodology is to make 3D CAD processes more efficient and better documented for consistency throughout the company.
Demo Time
Driving Modular Design
with Simplification
Demonstration – Driving Modular Design with Simplification

In this last demonstration, we are going to make a quick modular design using the simplification tool. We already have reviewed the design requirements and have created a workflow diagram showing our logical BOM assemblies.

- Compressor BOM Assembly
- Base Plate BOM Assembly
- Drive Motor BOM Assembly
- Driver Support BOM Assembly
Conclusion

There are a number of ways to create intelligent models within Inventor 2018. The key to deciding which method is best for your company is to understand your objectives.

I like to break it down as follows:

- **Day to Day Tasks** – Use simple parameters to drive your designs intelligently
- **Master models / templates** – Utilize iLogic & parameters to drive and create your designs
- **Conceptual work** – Use adaptivity to prove out conceptual designs or options
- **Simplification** – Modular design for Design Projects

I hope that these demonstrations has started to get the thought process churning to think of ways that you can add intelligence to your designs and workflows.
Conclusion (Con’t)

Autodesk Websites / Forums:

Autodesk Community Forums: https://forums.autodesk.com/

Inventor Blogs:

From the Trenches with Autodesk Inventor (Curtis Waguespack):

CADSETTEROUT(Paul Munford):

Inventor Tales (Jonathan Landeros):
Please Fill Out Your Surveys

Make sure your voice is heard by completing your surveys!

Please take the time to complete your survey for this and every class you attend at Autodesk University.

Autodesk uses this information to know what classes to offer in the future.
More Questions? Visit the AU Answer Bar

- Seek answers to all of your technical product questions by visiting the **Answer Bar**.

- Open daily in the Exhibit Hall.

- Staffed by Autodesk developers, QA, support engineers, and AU speakers ready to help you through your most challenging technical questions.