

Page 1

CS21802: Dynamo for Construction Workflows
Brendan Nichols
The Beck Group
BrendanNichols@beckgroup.com
@BrendanANichols

Description

Weôve all seen the Dynamo extension used for twisting dramatic towers, and weôve even
seen it used to recreate some of our favorite Star Wars characters. But if youôre a general
contractor or work in the construction industry, you may be wondering if Dynamo can do
anything for you. In this class, we will demonstrate real construction problems that were
solved with the Dynamo extension. You will see demonstrations analyzing slab flatness,
cut-and-fill volume calculation, and installation simulation. With the skills and examples
taught in this class, you will learn ways that Dynamo could be a game changer for your
business too. This session features Dynamo Studio and Revit. AIA Approved

Your AU Expert

Brendan Nichols is a Senior Virtual Building Engineer at the Beck Group. Beckôs integrated
design-build model allows him to tackle difficult challenges across both Architecture and
Construction. At the Beck Group, Brendan performs laser-scanning, building information
modeling, and supports these processes and workflows throughout the company. After
experiencing Beckôs cross-disciplinary challenges, Brendan has written multiple internal Revit
plugins to eliminate difficult or repetitive day to day tasks. He also enjoys writing scripts and
Dynamo definitions to solve some of Beckôs unique problems.

Learning Objectives

¶ Learn construction-specific uses for Dynamo

¶ Learn some Dynamo basics

¶ Learn how to identify tasks Dynamo could be useful for
¶ Get an introduction to Dynamo softwareôs online community and package

manager

Page 2

Halfen Detail Tolerance Simulation

For a legal case, I was asked to find a visual way to explain the tolerances in a Halfen embed
connection and how they would impact the installation of a curtain wall system. Halfen embeds
are typically cast in concrete and can be off of their desired location. The Halfen channel itself
allows tolerance in one direction, while the rest of the attachments provide tolerance in two
different directions with different methods.

A Revit family was made that could simulate these components and their
adjustability. Dynamo was used to manipulate and animate these components to show
the full range of flexibility in a way that legal staff could understand and present.

This section shows some of the very basic parts of Dynamo like manipulating
parameters in families. It also introduces the package manager and the Dynamo
community.

Halfen Connection Family
This family is designed in a way where the channel, and plates that attach the curtain wall to the
concrete slab edge, can all move without changing the actual location of the curtain wall
attachment. It has three instance parameters which control this movement:

Halfen Vert- controls the vertical position of the Halfen channel and simulates how the system
adapts to the channel being placed higher or lower in elevation than designed.
Halfen left- controls the left and right position of the Halfen channel and simulates how the
system adapts to the channel being to the left or right of its design location.
Offset from Face- controls the in-out location of the Halfen channel. This simulates how the
system reacts to the slab edge being off from its designed location

Page 3

In our case, as the contractor, we were obligated to ensure that the Halfen channel and the slab
edge were in the designed location plus or minus our tolerance. The subcontractor would then
be responsible for the rest of the system that attaches to the curtain wall mullion.
 This class will not spend time explaining how to make this family, but I wanted you to
understand the types of parameters we will be driving with Dynamo.

Driving from Dynamo
In Dynamo we can select an instance of this family thatôs placed in the project. One way of
doing that is by using this script.

This script uses the name of the family to get a list of all instances of the family and then

we take the first one from that list. Itôs very simple but is effectively like clicking an element in
Revit. We could also use a select element node in Dynamo and then just click the element,
however you would need to re-select the family if you used this script in a different file or if the
original element was deleted.
 Next we are going to look at the ways that we can control the parameters of this family
through Dynamo. First, we need to pass the element above to a node called
ñElement.SetParameterByNameò. Then we also need to give that node a Parameter name and
the intended value for that parameter. You can see that portion of the script below.

In this case we are driving the ñHalfen Vertò parameter we discussed before and we are

giving it a number to change that value to. This type of script can be used to modify almost any
parameter from the dynamo environment and is something Iôm always using.

Animating in Dynamo
Revit doesnôt come out of the box with any animation capabilities that I know of. And itôs always
something I wanted to do. Dynamo is here with a solution. I was keyed onto this node and
package called ñDynanimatorò created by Håvard Vasshaug. You can find the original blog post
here:
https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-
dynamo/

He was using this node to do things like manipulate window size openings and see the
effects on lighting inside of buildings. Heôs also used it to do some interesting mesh
manipulations and other great stuff.

https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-dynamo/
https://vasshaug.net/2015/04/22/dynanimator-released-animating-data-changes-in-revit-with-dynamo/

Page 4

Dynamo Community
Dynamo has a very active and helpful community. You can create, find, and share
Dynamo definitions directly through the Dynamo platform. I downloaded Håvardôs
Dynanimator package through the Dynamo package manager found under
Packages>Search for a package.

From this interface you can search for any package another Dynamo user has shared on
the package manager. This community and ability to share, really makes it easy to find
solutions for problems that other people have already had. Most times, you donôt need to
re-invent the wheel to get the job done, instead you re-purpose what others have done
for your own uses.
If you need any help doing this, the Dynamo forum is a great place to look for help
https://forum.dynamobim.com/

https://forum.dynamobim.com/

Page 5

Using Dynanimator
After downloading and installing the ñDynanimatorò package, it will appear on the left
toolbar along with all the standard Dynamo options. We will use the node called
ñDynanimate Numeric Parameterò. This node goes in the place of the
ñElement.SetParameterByNameò node that we used earlier. This node allows us to give
a range of values to set the parameter to and exports a view of each iteration to a folder
on your computer.

First change Dynamoôs run option to Manual. Then input the range of values
youôd like to use for your parameter. Then input the number of iterations or frames youôd
like to export. Keep in mind that if you plan to convert your frames to video, 30 frames
typically equals 1 second of video. Then you need to set your path and set your view
that you want to export. Using the standard view options in Revit you can really control
the view to make sure you get the effect you are looking for. Then you can press ñRunò
and watch your views exporting. After your views are exported you can use any video
editing software of your choice to convert these frames into a video.

Page 6

Slab Flatness Analysis

Often times after we pour slabs or demo an existing building down to the slabs, we need to add
a topping slab to level the floors. Floor finishes like terrazzo are especially expensive and
leveling out the elevation changes in the floor with concrete can be cheaper than just using
terrazzo.

In these circumstances we like to use laser scanning to capture the existing or
as-built conditions of the slab in order to analyze where the high and low spots in the
slab are. We use laser scanning, but conventional surveying can also capture these
deviations by measuring the elevation offsets on a consistent gridded distance. In the
end we are both working with a list of spot coordinates showing the elevations of the
slabs at different regular locations.

This topic will show list manipulation and cleanup steps taken through dynamo to
remove erroneous data points. These data manipulations become critical in most of the
cases where you use dynamo. It will also show how to place family instances from a list
of coordinates and show some different visualization techniques to use on your data.

Reading from Excel file
To get our data from scans into Revit/Dynamo for analysis we export a text file that can be
brought into excel. Dynamo is then used to clean the file of empty rows and sort the values into
their proper positions.

The script to read data out of excel is pretty simple. The node takes an excel file which can be
navigated to using a file path node and then you need to specify the sheet name. After you read
the excel file you will notice the data has some things we need to clean out.

Page 7

On the left you can see the data readout of the excel file. The data structure is a series of
nested lists. Every other list is full of null values, which we want to remove. We do this with the
node on the right. ñList.TakeEveryNthItemò selects every other list and returns them. Which is
what we want.

.
Next we use the node on the left to flatten the lists. ñList.Flattenò takes all the numbers and gets
them out of their sublists. Which is something we need to do for the next step. You can see that
every fourth value in this set is 0. Thatôs because our pointcloud software expects there to be
another value for each of these points which we didnôt export this time and donôt need for this
analysis.
 On the right you can see we use the node ñList.DropEveryNthItemò which we use to
remove every fourth item from the new list. Now our data is clean and ready for whatôs next!

Page 8

Creating something from our cleaned data
At this point we have a list of numbers. Every three numbers is an XYZ coordinate. Each of
these coordinates is a point on the slab that we are interested in. Now, we want to convert this
list of numbers into actual geometry inside of Revit.
 I use a family called ñColor Tileò for this operation. Itôs a very simple generic family. Itôs
point based and square. It has one parameter which controls the width of the square.
Conceptually they are like pixels and we can make the pixels bigger or smaller depending on
how big our sample is. So once this is loaded into Revit place one instance of it somewhere.
This ensures that Dynamo can find the family to use it.
 Now before we place try to place our families, we need to convert our units. Our
Pointcloud software uses the Metric system and we need values in feet for our Revit project. We
can easily convert this in Dynamo with a specifically designed ñConvertBetweenUnitsò node.

This node has a few fairly obvious dropdown options for setting up your conversions.
 After our units have been converted we are ready to place our Sample tile family.
Placing numerous family instances is one of the most practical and powerful uses for Dynamo.
Doing this one time can save hours of manual tedious work whenever a problem like that pops
up in your work, itôs a really good time to consider using Dynamo as your tool. The key node
behind this is for our example is the ñFamilyInstance.ByPointò node.

This node takes two parameters. The first is a family type. We can get at a family type in
Dynamo by passing the name of the family type into the ñFamilyType.ByNameò node. It is an
important distinction in Dynamo that the node require very specific inputs. If we just passed the
name of the family instance into this final node, it wouldnôt work.
 The other input for the family instance node is a point. Again we are using the numbers
we cleaned up earlier and inputting them into a ñPoint.ByCoordinatesò node. This node converts
them into an actual point and then we push that point into the final node. At this point, Dynamo
and Revit will take a long time to place all of these instances. You need to let your computer
spin while it does this. It may take an hour, but we are placing thousands of family instances into

Page 9

the project. In the end it will look like this:

Which is really great. We have thousands of objects representing our slab. They match the
surveyed points in location and accurately replicate the elevation changes of the slab. In this
picture above, Iôve cleaned more of the erroneous points from the geometry. The pointcloud
software extraction makes a few mistakes when extracting the points. These mistakes are quite
difficult to remove computationally, however are very easy to remove visually in Revit. This is
another case where Dynamo really makes a difference in our workflows and problem solving.
Itôs so easy to switch between the type of things computers are good at doing and the things
that humans are good at doing. If you can master when to use which approach, you can really
accomplish some really interesting things.

Better Visualizing our Data
Now having these points represented with actual geometry is a really big step forward to
understanding the changing slope of our slab. But Dynamo has some even better things we can
do with this data. Weôd really like to use color to make the changing elevation of the slabs even
easier to understand.
 Weôre going to move to a separate Dynamo script for this second part. We could
continue working in the same file but I like to follow a software development idea when working
in Dynamo as well. That idea is to separate concerns and make single use scripts. The idea
behind that is that itôs easier to see where things are going wrong and easier to re-use scripts.
So our first script has the job of cleaning up data and inserting family instances. This second

